選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

2477 行
71 KiB

  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // Linux system calls.
  5. // This file is compiled as ordinary Go code,
  6. // but it is also input to mksyscall,
  7. // which parses the //sys lines and generates system call stubs.
  8. // Note that sometimes we use a lowercase //sys name and
  9. // wrap it in our own nicer implementation.
  10. package unix
  11. import (
  12. "encoding/binary"
  13. "strconv"
  14. "syscall"
  15. "time"
  16. "unsafe"
  17. )
  18. /*
  19. * Wrapped
  20. */
  21. func Access(path string, mode uint32) (err error) {
  22. return Faccessat(AT_FDCWD, path, mode, 0)
  23. }
  24. func Chmod(path string, mode uint32) (err error) {
  25. return Fchmodat(AT_FDCWD, path, mode, 0)
  26. }
  27. func Chown(path string, uid int, gid int) (err error) {
  28. return Fchownat(AT_FDCWD, path, uid, gid, 0)
  29. }
  30. func Creat(path string, mode uint32) (fd int, err error) {
  31. return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
  32. }
  33. func EpollCreate(size int) (fd int, err error) {
  34. if size <= 0 {
  35. return -1, EINVAL
  36. }
  37. return EpollCreate1(0)
  38. }
  39. //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
  40. //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
  41. func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
  42. if pathname == "" {
  43. return fanotifyMark(fd, flags, mask, dirFd, nil)
  44. }
  45. p, err := BytePtrFromString(pathname)
  46. if err != nil {
  47. return err
  48. }
  49. return fanotifyMark(fd, flags, mask, dirFd, p)
  50. }
  51. //sys fchmodat(dirfd int, path string, mode uint32) (err error)
  52. func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
  53. // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
  54. // and check the flags. Otherwise the mode would be applied to the symlink
  55. // destination which is not what the user expects.
  56. if flags&^AT_SYMLINK_NOFOLLOW != 0 {
  57. return EINVAL
  58. } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
  59. return EOPNOTSUPP
  60. }
  61. return fchmodat(dirfd, path, mode)
  62. }
  63. func InotifyInit() (fd int, err error) {
  64. return InotifyInit1(0)
  65. }
  66. //sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
  67. //sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
  68. // ioctl itself should not be exposed directly, but additional get/set functions
  69. // for specific types are permissible. These are defined in ioctl.go and
  70. // ioctl_linux.go.
  71. //
  72. // The third argument to ioctl is often a pointer but sometimes an integer.
  73. // Callers should use ioctlPtr when the third argument is a pointer and ioctl
  74. // when the third argument is an integer.
  75. //
  76. // TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
  77. //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
  78. func Link(oldpath string, newpath string) (err error) {
  79. return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
  80. }
  81. func Mkdir(path string, mode uint32) (err error) {
  82. return Mkdirat(AT_FDCWD, path, mode)
  83. }
  84. func Mknod(path string, mode uint32, dev int) (err error) {
  85. return Mknodat(AT_FDCWD, path, mode, dev)
  86. }
  87. func Open(path string, mode int, perm uint32) (fd int, err error) {
  88. return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
  89. }
  90. //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
  91. func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
  92. return openat(dirfd, path, flags|O_LARGEFILE, mode)
  93. }
  94. //sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
  95. func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
  96. return openat2(dirfd, path, how, SizeofOpenHow)
  97. }
  98. func Pipe(p []int) error {
  99. return Pipe2(p, 0)
  100. }
  101. //sysnb pipe2(p *[2]_C_int, flags int) (err error)
  102. func Pipe2(p []int, flags int) error {
  103. if len(p) != 2 {
  104. return EINVAL
  105. }
  106. var pp [2]_C_int
  107. err := pipe2(&pp, flags)
  108. if err == nil {
  109. p[0] = int(pp[0])
  110. p[1] = int(pp[1])
  111. }
  112. return err
  113. }
  114. //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
  115. func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
  116. if len(fds) == 0 {
  117. return ppoll(nil, 0, timeout, sigmask)
  118. }
  119. return ppoll(&fds[0], len(fds), timeout, sigmask)
  120. }
  121. func Poll(fds []PollFd, timeout int) (n int, err error) {
  122. var ts *Timespec
  123. if timeout >= 0 {
  124. ts = new(Timespec)
  125. *ts = NsecToTimespec(int64(timeout) * 1e6)
  126. }
  127. return Ppoll(fds, ts, nil)
  128. }
  129. //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
  130. func Readlink(path string, buf []byte) (n int, err error) {
  131. return Readlinkat(AT_FDCWD, path, buf)
  132. }
  133. func Rename(oldpath string, newpath string) (err error) {
  134. return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
  135. }
  136. func Rmdir(path string) error {
  137. return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
  138. }
  139. //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
  140. func Symlink(oldpath string, newpath string) (err error) {
  141. return Symlinkat(oldpath, AT_FDCWD, newpath)
  142. }
  143. func Unlink(path string) error {
  144. return Unlinkat(AT_FDCWD, path, 0)
  145. }
  146. //sys Unlinkat(dirfd int, path string, flags int) (err error)
  147. func Utimes(path string, tv []Timeval) error {
  148. if tv == nil {
  149. err := utimensat(AT_FDCWD, path, nil, 0)
  150. if err != ENOSYS {
  151. return err
  152. }
  153. return utimes(path, nil)
  154. }
  155. if len(tv) != 2 {
  156. return EINVAL
  157. }
  158. var ts [2]Timespec
  159. ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
  160. ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
  161. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  162. if err != ENOSYS {
  163. return err
  164. }
  165. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  166. }
  167. //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
  168. func UtimesNano(path string, ts []Timespec) error {
  169. return UtimesNanoAt(AT_FDCWD, path, ts, 0)
  170. }
  171. func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
  172. if ts == nil {
  173. return utimensat(dirfd, path, nil, flags)
  174. }
  175. if len(ts) != 2 {
  176. return EINVAL
  177. }
  178. return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
  179. }
  180. func Futimesat(dirfd int, path string, tv []Timeval) error {
  181. if tv == nil {
  182. return futimesat(dirfd, path, nil)
  183. }
  184. if len(tv) != 2 {
  185. return EINVAL
  186. }
  187. return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  188. }
  189. func Futimes(fd int, tv []Timeval) (err error) {
  190. // Believe it or not, this is the best we can do on Linux
  191. // (and is what glibc does).
  192. return Utimes("/proc/self/fd/"+strconv.Itoa(fd), tv)
  193. }
  194. const ImplementsGetwd = true
  195. //sys Getcwd(buf []byte) (n int, err error)
  196. func Getwd() (wd string, err error) {
  197. var buf [PathMax]byte
  198. n, err := Getcwd(buf[0:])
  199. if err != nil {
  200. return "", err
  201. }
  202. // Getcwd returns the number of bytes written to buf, including the NUL.
  203. if n < 1 || n > len(buf) || buf[n-1] != 0 {
  204. return "", EINVAL
  205. }
  206. // In some cases, Linux can return a path that starts with the
  207. // "(unreachable)" prefix, which can potentially be a valid relative
  208. // path. To work around that, return ENOENT if path is not absolute.
  209. if buf[0] != '/' {
  210. return "", ENOENT
  211. }
  212. return string(buf[0 : n-1]), nil
  213. }
  214. func Getgroups() (gids []int, err error) {
  215. n, err := getgroups(0, nil)
  216. if err != nil {
  217. return nil, err
  218. }
  219. if n == 0 {
  220. return nil, nil
  221. }
  222. // Sanity check group count. Max is 1<<16 on Linux.
  223. if n < 0 || n > 1<<20 {
  224. return nil, EINVAL
  225. }
  226. a := make([]_Gid_t, n)
  227. n, err = getgroups(n, &a[0])
  228. if err != nil {
  229. return nil, err
  230. }
  231. gids = make([]int, n)
  232. for i, v := range a[0:n] {
  233. gids[i] = int(v)
  234. }
  235. return
  236. }
  237. func Setgroups(gids []int) (err error) {
  238. if len(gids) == 0 {
  239. return setgroups(0, nil)
  240. }
  241. a := make([]_Gid_t, len(gids))
  242. for i, v := range gids {
  243. a[i] = _Gid_t(v)
  244. }
  245. return setgroups(len(a), &a[0])
  246. }
  247. type WaitStatus uint32
  248. // Wait status is 7 bits at bottom, either 0 (exited),
  249. // 0x7F (stopped), or a signal number that caused an exit.
  250. // The 0x80 bit is whether there was a core dump.
  251. // An extra number (exit code, signal causing a stop)
  252. // is in the high bits. At least that's the idea.
  253. // There are various irregularities. For example, the
  254. // "continued" status is 0xFFFF, distinguishing itself
  255. // from stopped via the core dump bit.
  256. const (
  257. mask = 0x7F
  258. core = 0x80
  259. exited = 0x00
  260. stopped = 0x7F
  261. shift = 8
  262. )
  263. func (w WaitStatus) Exited() bool { return w&mask == exited }
  264. func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
  265. func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
  266. func (w WaitStatus) Continued() bool { return w == 0xFFFF }
  267. func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
  268. func (w WaitStatus) ExitStatus() int {
  269. if !w.Exited() {
  270. return -1
  271. }
  272. return int(w>>shift) & 0xFF
  273. }
  274. func (w WaitStatus) Signal() syscall.Signal {
  275. if !w.Signaled() {
  276. return -1
  277. }
  278. return syscall.Signal(w & mask)
  279. }
  280. func (w WaitStatus) StopSignal() syscall.Signal {
  281. if !w.Stopped() {
  282. return -1
  283. }
  284. return syscall.Signal(w>>shift) & 0xFF
  285. }
  286. func (w WaitStatus) TrapCause() int {
  287. if w.StopSignal() != SIGTRAP {
  288. return -1
  289. }
  290. return int(w>>shift) >> 8
  291. }
  292. //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
  293. func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
  294. var status _C_int
  295. wpid, err = wait4(pid, &status, options, rusage)
  296. if wstatus != nil {
  297. *wstatus = WaitStatus(status)
  298. }
  299. return
  300. }
  301. //sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error)
  302. func Mkfifo(path string, mode uint32) error {
  303. return Mknod(path, mode|S_IFIFO, 0)
  304. }
  305. func Mkfifoat(dirfd int, path string, mode uint32) error {
  306. return Mknodat(dirfd, path, mode|S_IFIFO, 0)
  307. }
  308. func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
  309. if sa.Port < 0 || sa.Port > 0xFFFF {
  310. return nil, 0, EINVAL
  311. }
  312. sa.raw.Family = AF_INET
  313. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  314. p[0] = byte(sa.Port >> 8)
  315. p[1] = byte(sa.Port)
  316. sa.raw.Addr = sa.Addr
  317. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
  318. }
  319. func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
  320. if sa.Port < 0 || sa.Port > 0xFFFF {
  321. return nil, 0, EINVAL
  322. }
  323. sa.raw.Family = AF_INET6
  324. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  325. p[0] = byte(sa.Port >> 8)
  326. p[1] = byte(sa.Port)
  327. sa.raw.Scope_id = sa.ZoneId
  328. sa.raw.Addr = sa.Addr
  329. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
  330. }
  331. func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
  332. name := sa.Name
  333. n := len(name)
  334. if n >= len(sa.raw.Path) {
  335. return nil, 0, EINVAL
  336. }
  337. sa.raw.Family = AF_UNIX
  338. for i := 0; i < n; i++ {
  339. sa.raw.Path[i] = int8(name[i])
  340. }
  341. // length is family (uint16), name, NUL.
  342. sl := _Socklen(2)
  343. if n > 0 {
  344. sl += _Socklen(n) + 1
  345. }
  346. if sa.raw.Path[0] == '@' {
  347. sa.raw.Path[0] = 0
  348. // Don't count trailing NUL for abstract address.
  349. sl--
  350. }
  351. return unsafe.Pointer(&sa.raw), sl, nil
  352. }
  353. // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
  354. type SockaddrLinklayer struct {
  355. Protocol uint16
  356. Ifindex int
  357. Hatype uint16
  358. Pkttype uint8
  359. Halen uint8
  360. Addr [8]byte
  361. raw RawSockaddrLinklayer
  362. }
  363. func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
  364. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  365. return nil, 0, EINVAL
  366. }
  367. sa.raw.Family = AF_PACKET
  368. sa.raw.Protocol = sa.Protocol
  369. sa.raw.Ifindex = int32(sa.Ifindex)
  370. sa.raw.Hatype = sa.Hatype
  371. sa.raw.Pkttype = sa.Pkttype
  372. sa.raw.Halen = sa.Halen
  373. sa.raw.Addr = sa.Addr
  374. return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
  375. }
  376. // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
  377. type SockaddrNetlink struct {
  378. Family uint16
  379. Pad uint16
  380. Pid uint32
  381. Groups uint32
  382. raw RawSockaddrNetlink
  383. }
  384. func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
  385. sa.raw.Family = AF_NETLINK
  386. sa.raw.Pad = sa.Pad
  387. sa.raw.Pid = sa.Pid
  388. sa.raw.Groups = sa.Groups
  389. return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
  390. }
  391. // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
  392. // using the HCI protocol.
  393. type SockaddrHCI struct {
  394. Dev uint16
  395. Channel uint16
  396. raw RawSockaddrHCI
  397. }
  398. func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
  399. sa.raw.Family = AF_BLUETOOTH
  400. sa.raw.Dev = sa.Dev
  401. sa.raw.Channel = sa.Channel
  402. return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
  403. }
  404. // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
  405. // using the L2CAP protocol.
  406. type SockaddrL2 struct {
  407. PSM uint16
  408. CID uint16
  409. Addr [6]uint8
  410. AddrType uint8
  411. raw RawSockaddrL2
  412. }
  413. func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
  414. sa.raw.Family = AF_BLUETOOTH
  415. psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
  416. psm[0] = byte(sa.PSM)
  417. psm[1] = byte(sa.PSM >> 8)
  418. for i := 0; i < len(sa.Addr); i++ {
  419. sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
  420. }
  421. cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
  422. cid[0] = byte(sa.CID)
  423. cid[1] = byte(sa.CID >> 8)
  424. sa.raw.Bdaddr_type = sa.AddrType
  425. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
  426. }
  427. // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
  428. // using the RFCOMM protocol.
  429. //
  430. // Server example:
  431. //
  432. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  433. // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
  434. // Channel: 1,
  435. // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
  436. // })
  437. // _ = Listen(fd, 1)
  438. // nfd, sa, _ := Accept(fd)
  439. // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
  440. // Read(nfd, buf)
  441. //
  442. // Client example:
  443. //
  444. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  445. // _ = Connect(fd, &SockaddrRFCOMM{
  446. // Channel: 1,
  447. // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
  448. // })
  449. // Write(fd, []byte(`hello`))
  450. type SockaddrRFCOMM struct {
  451. // Addr represents a bluetooth address, byte ordering is little-endian.
  452. Addr [6]uint8
  453. // Channel is a designated bluetooth channel, only 1-30 are available for use.
  454. // Since Linux 2.6.7 and further zero value is the first available channel.
  455. Channel uint8
  456. raw RawSockaddrRFCOMM
  457. }
  458. func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  459. sa.raw.Family = AF_BLUETOOTH
  460. sa.raw.Channel = sa.Channel
  461. sa.raw.Bdaddr = sa.Addr
  462. return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
  463. }
  464. // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
  465. // The RxID and TxID fields are used for transport protocol addressing in
  466. // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
  467. // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
  468. //
  469. // The SockaddrCAN struct must be bound to the socket file descriptor
  470. // using Bind before the CAN socket can be used.
  471. //
  472. // // Read one raw CAN frame
  473. // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
  474. // addr := &SockaddrCAN{Ifindex: index}
  475. // Bind(fd, addr)
  476. // frame := make([]byte, 16)
  477. // Read(fd, frame)
  478. //
  479. // The full SocketCAN documentation can be found in the linux kernel
  480. // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
  481. type SockaddrCAN struct {
  482. Ifindex int
  483. RxID uint32
  484. TxID uint32
  485. raw RawSockaddrCAN
  486. }
  487. func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
  488. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  489. return nil, 0, EINVAL
  490. }
  491. sa.raw.Family = AF_CAN
  492. sa.raw.Ifindex = int32(sa.Ifindex)
  493. rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  494. for i := 0; i < 4; i++ {
  495. sa.raw.Addr[i] = rx[i]
  496. }
  497. tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  498. for i := 0; i < 4; i++ {
  499. sa.raw.Addr[i+4] = tx[i]
  500. }
  501. return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
  502. }
  503. // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
  504. // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
  505. // on the purposes of the fields, check the official linux kernel documentation
  506. // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
  507. type SockaddrCANJ1939 struct {
  508. Ifindex int
  509. Name uint64
  510. PGN uint32
  511. Addr uint8
  512. raw RawSockaddrCAN
  513. }
  514. func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
  515. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  516. return nil, 0, EINVAL
  517. }
  518. sa.raw.Family = AF_CAN
  519. sa.raw.Ifindex = int32(sa.Ifindex)
  520. n := (*[8]byte)(unsafe.Pointer(&sa.Name))
  521. for i := 0; i < 8; i++ {
  522. sa.raw.Addr[i] = n[i]
  523. }
  524. p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
  525. for i := 0; i < 4; i++ {
  526. sa.raw.Addr[i+8] = p[i]
  527. }
  528. sa.raw.Addr[12] = sa.Addr
  529. return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
  530. }
  531. // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
  532. // SockaddrALG enables userspace access to the Linux kernel's cryptography
  533. // subsystem. The Type and Name fields specify which type of hash or cipher
  534. // should be used with a given socket.
  535. //
  536. // To create a file descriptor that provides access to a hash or cipher, both
  537. // Bind and Accept must be used. Once the setup process is complete, input
  538. // data can be written to the socket, processed by the kernel, and then read
  539. // back as hash output or ciphertext.
  540. //
  541. // Here is an example of using an AF_ALG socket with SHA1 hashing.
  542. // The initial socket setup process is as follows:
  543. //
  544. // // Open a socket to perform SHA1 hashing.
  545. // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
  546. // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
  547. // unix.Bind(fd, addr)
  548. // // Note: unix.Accept does not work at this time; must invoke accept()
  549. // // manually using unix.Syscall.
  550. // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
  551. //
  552. // Once a file descriptor has been returned from Accept, it may be used to
  553. // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
  554. // may be re-used repeatedly with subsequent Write and Read operations.
  555. //
  556. // When hashing a small byte slice or string, a single Write and Read may
  557. // be used:
  558. //
  559. // // Assume hashfd is already configured using the setup process.
  560. // hash := os.NewFile(hashfd, "sha1")
  561. // // Hash an input string and read the results. Each Write discards
  562. // // previous hash state. Read always reads the current state.
  563. // b := make([]byte, 20)
  564. // for i := 0; i < 2; i++ {
  565. // io.WriteString(hash, "Hello, world.")
  566. // hash.Read(b)
  567. // fmt.Println(hex.EncodeToString(b))
  568. // }
  569. // // Output:
  570. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  571. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  572. //
  573. // For hashing larger byte slices, or byte streams such as those read from
  574. // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
  575. // the hash digest instead of creating a new one for a given chunk and finalizing it.
  576. //
  577. // // Assume hashfd and addr are already configured using the setup process.
  578. // hash := os.NewFile(hashfd, "sha1")
  579. // // Hash the contents of a file.
  580. // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
  581. // b := make([]byte, 4096)
  582. // for {
  583. // n, err := f.Read(b)
  584. // if err == io.EOF {
  585. // break
  586. // }
  587. // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
  588. // }
  589. // hash.Read(b)
  590. // fmt.Println(hex.EncodeToString(b))
  591. // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
  592. //
  593. // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
  594. type SockaddrALG struct {
  595. Type string
  596. Name string
  597. Feature uint32
  598. Mask uint32
  599. raw RawSockaddrALG
  600. }
  601. func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
  602. // Leave room for NUL byte terminator.
  603. if len(sa.Type) > 13 {
  604. return nil, 0, EINVAL
  605. }
  606. if len(sa.Name) > 63 {
  607. return nil, 0, EINVAL
  608. }
  609. sa.raw.Family = AF_ALG
  610. sa.raw.Feat = sa.Feature
  611. sa.raw.Mask = sa.Mask
  612. typ, err := ByteSliceFromString(sa.Type)
  613. if err != nil {
  614. return nil, 0, err
  615. }
  616. name, err := ByteSliceFromString(sa.Name)
  617. if err != nil {
  618. return nil, 0, err
  619. }
  620. copy(sa.raw.Type[:], typ)
  621. copy(sa.raw.Name[:], name)
  622. return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
  623. }
  624. // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
  625. // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
  626. // bidirectional communication between a hypervisor and its guest virtual
  627. // machines.
  628. type SockaddrVM struct {
  629. // CID and Port specify a context ID and port address for a VM socket.
  630. // Guests have a unique CID, and hosts may have a well-known CID of:
  631. // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
  632. // - VMADDR_CID_LOCAL: refers to local communication (loopback).
  633. // - VMADDR_CID_HOST: refers to other processes on the host.
  634. CID uint32
  635. Port uint32
  636. Flags uint8
  637. raw RawSockaddrVM
  638. }
  639. func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  640. sa.raw.Family = AF_VSOCK
  641. sa.raw.Port = sa.Port
  642. sa.raw.Cid = sa.CID
  643. sa.raw.Flags = sa.Flags
  644. return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
  645. }
  646. type SockaddrXDP struct {
  647. Flags uint16
  648. Ifindex uint32
  649. QueueID uint32
  650. SharedUmemFD uint32
  651. raw RawSockaddrXDP
  652. }
  653. func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
  654. sa.raw.Family = AF_XDP
  655. sa.raw.Flags = sa.Flags
  656. sa.raw.Ifindex = sa.Ifindex
  657. sa.raw.Queue_id = sa.QueueID
  658. sa.raw.Shared_umem_fd = sa.SharedUmemFD
  659. return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
  660. }
  661. // This constant mirrors the #define of PX_PROTO_OE in
  662. // linux/if_pppox.h. We're defining this by hand here instead of
  663. // autogenerating through mkerrors.sh because including
  664. // linux/if_pppox.h causes some declaration conflicts with other
  665. // includes (linux/if_pppox.h includes linux/in.h, which conflicts
  666. // with netinet/in.h). Given that we only need a single zero constant
  667. // out of that file, it's cleaner to just define it by hand here.
  668. const px_proto_oe = 0
  669. type SockaddrPPPoE struct {
  670. SID uint16
  671. Remote []byte
  672. Dev string
  673. raw RawSockaddrPPPoX
  674. }
  675. func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
  676. if len(sa.Remote) != 6 {
  677. return nil, 0, EINVAL
  678. }
  679. if len(sa.Dev) > IFNAMSIZ-1 {
  680. return nil, 0, EINVAL
  681. }
  682. *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
  683. // This next field is in host-endian byte order. We can't use the
  684. // same unsafe pointer cast as above, because this value is not
  685. // 32-bit aligned and some architectures don't allow unaligned
  686. // access.
  687. //
  688. // However, the value of px_proto_oe is 0, so we can use
  689. // encoding/binary helpers to write the bytes without worrying
  690. // about the ordering.
  691. binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
  692. // This field is deliberately big-endian, unlike the previous
  693. // one. The kernel expects SID to be in network byte order.
  694. binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
  695. copy(sa.raw[8:14], sa.Remote)
  696. for i := 14; i < 14+IFNAMSIZ; i++ {
  697. sa.raw[i] = 0
  698. }
  699. copy(sa.raw[14:], sa.Dev)
  700. return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
  701. }
  702. // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
  703. // For more information on TIPC, see: http://tipc.sourceforge.net/.
  704. type SockaddrTIPC struct {
  705. // Scope is the publication scopes when binding service/service range.
  706. // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
  707. Scope int
  708. // Addr is the type of address used to manipulate a socket. Addr must be
  709. // one of:
  710. // - *TIPCSocketAddr: "id" variant in the C addr union
  711. // - *TIPCServiceRange: "nameseq" variant in the C addr union
  712. // - *TIPCServiceName: "name" variant in the C addr union
  713. //
  714. // If nil, EINVAL will be returned when the structure is used.
  715. Addr TIPCAddr
  716. raw RawSockaddrTIPC
  717. }
  718. // TIPCAddr is implemented by types that can be used as an address for
  719. // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
  720. // and *TIPCServiceName.
  721. type TIPCAddr interface {
  722. tipcAddrtype() uint8
  723. tipcAddr() [12]byte
  724. }
  725. func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
  726. var out [12]byte
  727. copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
  728. return out
  729. }
  730. func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
  731. func (sa *TIPCServiceRange) tipcAddr() [12]byte {
  732. var out [12]byte
  733. copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
  734. return out
  735. }
  736. func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
  737. func (sa *TIPCServiceName) tipcAddr() [12]byte {
  738. var out [12]byte
  739. copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
  740. return out
  741. }
  742. func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
  743. func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
  744. if sa.Addr == nil {
  745. return nil, 0, EINVAL
  746. }
  747. sa.raw.Family = AF_TIPC
  748. sa.raw.Scope = int8(sa.Scope)
  749. sa.raw.Addrtype = sa.Addr.tipcAddrtype()
  750. sa.raw.Addr = sa.Addr.tipcAddr()
  751. return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
  752. }
  753. // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
  754. type SockaddrL2TPIP struct {
  755. Addr [4]byte
  756. ConnId uint32
  757. raw RawSockaddrL2TPIP
  758. }
  759. func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
  760. sa.raw.Family = AF_INET
  761. sa.raw.Conn_id = sa.ConnId
  762. sa.raw.Addr = sa.Addr
  763. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
  764. }
  765. // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
  766. type SockaddrL2TPIP6 struct {
  767. Addr [16]byte
  768. ZoneId uint32
  769. ConnId uint32
  770. raw RawSockaddrL2TPIP6
  771. }
  772. func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
  773. sa.raw.Family = AF_INET6
  774. sa.raw.Conn_id = sa.ConnId
  775. sa.raw.Scope_id = sa.ZoneId
  776. sa.raw.Addr = sa.Addr
  777. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
  778. }
  779. // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
  780. type SockaddrIUCV struct {
  781. UserID string
  782. Name string
  783. raw RawSockaddrIUCV
  784. }
  785. func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
  786. sa.raw.Family = AF_IUCV
  787. // These are EBCDIC encoded by the kernel, but we still need to pad them
  788. // with blanks. Initializing with blanks allows the caller to feed in either
  789. // a padded or an unpadded string.
  790. for i := 0; i < 8; i++ {
  791. sa.raw.Nodeid[i] = ' '
  792. sa.raw.User_id[i] = ' '
  793. sa.raw.Name[i] = ' '
  794. }
  795. if len(sa.UserID) > 8 || len(sa.Name) > 8 {
  796. return nil, 0, EINVAL
  797. }
  798. for i, b := range []byte(sa.UserID[:]) {
  799. sa.raw.User_id[i] = int8(b)
  800. }
  801. for i, b := range []byte(sa.Name[:]) {
  802. sa.raw.Name[i] = int8(b)
  803. }
  804. return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
  805. }
  806. type SockaddrNFC struct {
  807. DeviceIdx uint32
  808. TargetIdx uint32
  809. NFCProtocol uint32
  810. raw RawSockaddrNFC
  811. }
  812. func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
  813. sa.raw.Sa_family = AF_NFC
  814. sa.raw.Dev_idx = sa.DeviceIdx
  815. sa.raw.Target_idx = sa.TargetIdx
  816. sa.raw.Nfc_protocol = sa.NFCProtocol
  817. return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
  818. }
  819. type SockaddrNFCLLCP struct {
  820. DeviceIdx uint32
  821. TargetIdx uint32
  822. NFCProtocol uint32
  823. DestinationSAP uint8
  824. SourceSAP uint8
  825. ServiceName string
  826. raw RawSockaddrNFCLLCP
  827. }
  828. func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
  829. sa.raw.Sa_family = AF_NFC
  830. sa.raw.Dev_idx = sa.DeviceIdx
  831. sa.raw.Target_idx = sa.TargetIdx
  832. sa.raw.Nfc_protocol = sa.NFCProtocol
  833. sa.raw.Dsap = sa.DestinationSAP
  834. sa.raw.Ssap = sa.SourceSAP
  835. if len(sa.ServiceName) > len(sa.raw.Service_name) {
  836. return nil, 0, EINVAL
  837. }
  838. copy(sa.raw.Service_name[:], sa.ServiceName)
  839. sa.raw.SetServiceNameLen(len(sa.ServiceName))
  840. return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
  841. }
  842. var socketProtocol = func(fd int) (int, error) {
  843. return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
  844. }
  845. func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
  846. switch rsa.Addr.Family {
  847. case AF_NETLINK:
  848. pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
  849. sa := new(SockaddrNetlink)
  850. sa.Family = pp.Family
  851. sa.Pad = pp.Pad
  852. sa.Pid = pp.Pid
  853. sa.Groups = pp.Groups
  854. return sa, nil
  855. case AF_PACKET:
  856. pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
  857. sa := new(SockaddrLinklayer)
  858. sa.Protocol = pp.Protocol
  859. sa.Ifindex = int(pp.Ifindex)
  860. sa.Hatype = pp.Hatype
  861. sa.Pkttype = pp.Pkttype
  862. sa.Halen = pp.Halen
  863. sa.Addr = pp.Addr
  864. return sa, nil
  865. case AF_UNIX:
  866. pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
  867. sa := new(SockaddrUnix)
  868. if pp.Path[0] == 0 {
  869. // "Abstract" Unix domain socket.
  870. // Rewrite leading NUL as @ for textual display.
  871. // (This is the standard convention.)
  872. // Not friendly to overwrite in place,
  873. // but the callers below don't care.
  874. pp.Path[0] = '@'
  875. }
  876. // Assume path ends at NUL.
  877. // This is not technically the Linux semantics for
  878. // abstract Unix domain sockets--they are supposed
  879. // to be uninterpreted fixed-size binary blobs--but
  880. // everyone uses this convention.
  881. n := 0
  882. for n < len(pp.Path) && pp.Path[n] != 0 {
  883. n++
  884. }
  885. bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
  886. sa.Name = string(bytes)
  887. return sa, nil
  888. case AF_INET:
  889. proto, err := socketProtocol(fd)
  890. if err != nil {
  891. return nil, err
  892. }
  893. switch proto {
  894. case IPPROTO_L2TP:
  895. pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
  896. sa := new(SockaddrL2TPIP)
  897. sa.ConnId = pp.Conn_id
  898. sa.Addr = pp.Addr
  899. return sa, nil
  900. default:
  901. pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
  902. sa := new(SockaddrInet4)
  903. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  904. sa.Port = int(p[0])<<8 + int(p[1])
  905. sa.Addr = pp.Addr
  906. return sa, nil
  907. }
  908. case AF_INET6:
  909. proto, err := socketProtocol(fd)
  910. if err != nil {
  911. return nil, err
  912. }
  913. switch proto {
  914. case IPPROTO_L2TP:
  915. pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
  916. sa := new(SockaddrL2TPIP6)
  917. sa.ConnId = pp.Conn_id
  918. sa.ZoneId = pp.Scope_id
  919. sa.Addr = pp.Addr
  920. return sa, nil
  921. default:
  922. pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
  923. sa := new(SockaddrInet6)
  924. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  925. sa.Port = int(p[0])<<8 + int(p[1])
  926. sa.ZoneId = pp.Scope_id
  927. sa.Addr = pp.Addr
  928. return sa, nil
  929. }
  930. case AF_VSOCK:
  931. pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
  932. sa := &SockaddrVM{
  933. CID: pp.Cid,
  934. Port: pp.Port,
  935. Flags: pp.Flags,
  936. }
  937. return sa, nil
  938. case AF_BLUETOOTH:
  939. proto, err := socketProtocol(fd)
  940. if err != nil {
  941. return nil, err
  942. }
  943. // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
  944. switch proto {
  945. case BTPROTO_L2CAP:
  946. pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
  947. sa := &SockaddrL2{
  948. PSM: pp.Psm,
  949. CID: pp.Cid,
  950. Addr: pp.Bdaddr,
  951. AddrType: pp.Bdaddr_type,
  952. }
  953. return sa, nil
  954. case BTPROTO_RFCOMM:
  955. pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
  956. sa := &SockaddrRFCOMM{
  957. Channel: pp.Channel,
  958. Addr: pp.Bdaddr,
  959. }
  960. return sa, nil
  961. }
  962. case AF_XDP:
  963. pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
  964. sa := &SockaddrXDP{
  965. Flags: pp.Flags,
  966. Ifindex: pp.Ifindex,
  967. QueueID: pp.Queue_id,
  968. SharedUmemFD: pp.Shared_umem_fd,
  969. }
  970. return sa, nil
  971. case AF_PPPOX:
  972. pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
  973. if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
  974. return nil, EINVAL
  975. }
  976. sa := &SockaddrPPPoE{
  977. SID: binary.BigEndian.Uint16(pp[6:8]),
  978. Remote: pp[8:14],
  979. }
  980. for i := 14; i < 14+IFNAMSIZ; i++ {
  981. if pp[i] == 0 {
  982. sa.Dev = string(pp[14:i])
  983. break
  984. }
  985. }
  986. return sa, nil
  987. case AF_TIPC:
  988. pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
  989. sa := &SockaddrTIPC{
  990. Scope: int(pp.Scope),
  991. }
  992. // Determine which union variant is present in pp.Addr by checking
  993. // pp.Addrtype.
  994. switch pp.Addrtype {
  995. case TIPC_SERVICE_RANGE:
  996. sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
  997. case TIPC_SERVICE_ADDR:
  998. sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
  999. case TIPC_SOCKET_ADDR:
  1000. sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
  1001. default:
  1002. return nil, EINVAL
  1003. }
  1004. return sa, nil
  1005. case AF_IUCV:
  1006. pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
  1007. var user [8]byte
  1008. var name [8]byte
  1009. for i := 0; i < 8; i++ {
  1010. user[i] = byte(pp.User_id[i])
  1011. name[i] = byte(pp.Name[i])
  1012. }
  1013. sa := &SockaddrIUCV{
  1014. UserID: string(user[:]),
  1015. Name: string(name[:]),
  1016. }
  1017. return sa, nil
  1018. case AF_CAN:
  1019. proto, err := socketProtocol(fd)
  1020. if err != nil {
  1021. return nil, err
  1022. }
  1023. pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
  1024. switch proto {
  1025. case CAN_J1939:
  1026. sa := &SockaddrCANJ1939{
  1027. Ifindex: int(pp.Ifindex),
  1028. }
  1029. name := (*[8]byte)(unsafe.Pointer(&sa.Name))
  1030. for i := 0; i < 8; i++ {
  1031. name[i] = pp.Addr[i]
  1032. }
  1033. pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
  1034. for i := 0; i < 4; i++ {
  1035. pgn[i] = pp.Addr[i+8]
  1036. }
  1037. addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
  1038. addr[0] = pp.Addr[12]
  1039. return sa, nil
  1040. default:
  1041. sa := &SockaddrCAN{
  1042. Ifindex: int(pp.Ifindex),
  1043. }
  1044. rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  1045. for i := 0; i < 4; i++ {
  1046. rx[i] = pp.Addr[i]
  1047. }
  1048. tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  1049. for i := 0; i < 4; i++ {
  1050. tx[i] = pp.Addr[i+4]
  1051. }
  1052. return sa, nil
  1053. }
  1054. case AF_NFC:
  1055. proto, err := socketProtocol(fd)
  1056. if err != nil {
  1057. return nil, err
  1058. }
  1059. switch proto {
  1060. case NFC_SOCKPROTO_RAW:
  1061. pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
  1062. sa := &SockaddrNFC{
  1063. DeviceIdx: pp.Dev_idx,
  1064. TargetIdx: pp.Target_idx,
  1065. NFCProtocol: pp.Nfc_protocol,
  1066. }
  1067. return sa, nil
  1068. case NFC_SOCKPROTO_LLCP:
  1069. pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
  1070. if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
  1071. return nil, EINVAL
  1072. }
  1073. sa := &SockaddrNFCLLCP{
  1074. DeviceIdx: pp.Dev_idx,
  1075. TargetIdx: pp.Target_idx,
  1076. NFCProtocol: pp.Nfc_protocol,
  1077. DestinationSAP: pp.Dsap,
  1078. SourceSAP: pp.Ssap,
  1079. ServiceName: string(pp.Service_name[:pp.Service_name_len]),
  1080. }
  1081. return sa, nil
  1082. default:
  1083. return nil, EINVAL
  1084. }
  1085. }
  1086. return nil, EAFNOSUPPORT
  1087. }
  1088. func Accept(fd int) (nfd int, sa Sockaddr, err error) {
  1089. var rsa RawSockaddrAny
  1090. var len _Socklen = SizeofSockaddrAny
  1091. nfd, err = accept4(fd, &rsa, &len, 0)
  1092. if err != nil {
  1093. return
  1094. }
  1095. sa, err = anyToSockaddr(fd, &rsa)
  1096. if err != nil {
  1097. Close(nfd)
  1098. nfd = 0
  1099. }
  1100. return
  1101. }
  1102. func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
  1103. var rsa RawSockaddrAny
  1104. var len _Socklen = SizeofSockaddrAny
  1105. nfd, err = accept4(fd, &rsa, &len, flags)
  1106. if err != nil {
  1107. return
  1108. }
  1109. if len > SizeofSockaddrAny {
  1110. panic("RawSockaddrAny too small")
  1111. }
  1112. sa, err = anyToSockaddr(fd, &rsa)
  1113. if err != nil {
  1114. Close(nfd)
  1115. nfd = 0
  1116. }
  1117. return
  1118. }
  1119. func Getsockname(fd int) (sa Sockaddr, err error) {
  1120. var rsa RawSockaddrAny
  1121. var len _Socklen = SizeofSockaddrAny
  1122. if err = getsockname(fd, &rsa, &len); err != nil {
  1123. return
  1124. }
  1125. return anyToSockaddr(fd, &rsa)
  1126. }
  1127. func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
  1128. var value IPMreqn
  1129. vallen := _Socklen(SizeofIPMreqn)
  1130. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1131. return &value, err
  1132. }
  1133. func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
  1134. var value Ucred
  1135. vallen := _Socklen(SizeofUcred)
  1136. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1137. return &value, err
  1138. }
  1139. func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
  1140. var value TCPInfo
  1141. vallen := _Socklen(SizeofTCPInfo)
  1142. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1143. return &value, err
  1144. }
  1145. // GetsockoptString returns the string value of the socket option opt for the
  1146. // socket associated with fd at the given socket level.
  1147. func GetsockoptString(fd, level, opt int) (string, error) {
  1148. buf := make([]byte, 256)
  1149. vallen := _Socklen(len(buf))
  1150. err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1151. if err != nil {
  1152. if err == ERANGE {
  1153. buf = make([]byte, vallen)
  1154. err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1155. }
  1156. if err != nil {
  1157. return "", err
  1158. }
  1159. }
  1160. return string(buf[:vallen-1]), nil
  1161. }
  1162. func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
  1163. var value TpacketStats
  1164. vallen := _Socklen(SizeofTpacketStats)
  1165. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1166. return &value, err
  1167. }
  1168. func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
  1169. var value TpacketStatsV3
  1170. vallen := _Socklen(SizeofTpacketStatsV3)
  1171. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1172. return &value, err
  1173. }
  1174. func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  1175. return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1176. }
  1177. func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
  1178. return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1179. }
  1180. // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
  1181. // socket to filter incoming packets. See 'man 7 socket' for usage information.
  1182. func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
  1183. return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
  1184. }
  1185. func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
  1186. var p unsafe.Pointer
  1187. if len(filter) > 0 {
  1188. p = unsafe.Pointer(&filter[0])
  1189. }
  1190. return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
  1191. }
  1192. func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
  1193. return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1194. }
  1195. func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
  1196. return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1197. }
  1198. func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
  1199. if len(o) == 0 {
  1200. return EINVAL
  1201. }
  1202. return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
  1203. }
  1204. // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  1205. // KeyctlInt calls keyctl commands in which each argument is an int.
  1206. // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  1207. // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  1208. // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  1209. // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  1210. //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  1211. // KeyctlBuffer calls keyctl commands in which the third and fourth
  1212. // arguments are a buffer and its length, respectively.
  1213. // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  1214. //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  1215. // KeyctlString calls keyctl commands which return a string.
  1216. // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  1217. func KeyctlString(cmd int, id int) (string, error) {
  1218. // We must loop as the string data may change in between the syscalls.
  1219. // We could allocate a large buffer here to reduce the chance that the
  1220. // syscall needs to be called twice; however, this is unnecessary as
  1221. // the performance loss is negligible.
  1222. var buffer []byte
  1223. for {
  1224. // Try to fill the buffer with data
  1225. length, err := KeyctlBuffer(cmd, id, buffer, 0)
  1226. if err != nil {
  1227. return "", err
  1228. }
  1229. // Check if the data was written
  1230. if length <= len(buffer) {
  1231. // Exclude the null terminator
  1232. return string(buffer[:length-1]), nil
  1233. }
  1234. // Make a bigger buffer if needed
  1235. buffer = make([]byte, length)
  1236. }
  1237. }
  1238. // Keyctl commands with special signatures.
  1239. // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  1240. // See the full documentation at:
  1241. // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  1242. func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  1243. createInt := 0
  1244. if create {
  1245. createInt = 1
  1246. }
  1247. return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  1248. }
  1249. // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  1250. // key handle permission mask as described in the "keyctl setperm" section of
  1251. // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  1252. // See the full documentation at:
  1253. // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  1254. func KeyctlSetperm(id int, perm uint32) error {
  1255. _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  1256. return err
  1257. }
  1258. //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  1259. // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  1260. // See the full documentation at:
  1261. // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  1262. func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  1263. return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  1264. }
  1265. //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  1266. // KeyctlSearch implements the KEYCTL_SEARCH command.
  1267. // See the full documentation at:
  1268. // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  1269. func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  1270. return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  1271. }
  1272. //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  1273. // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  1274. // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  1275. // of Iovec (each of which represents a buffer) instead of a single buffer.
  1276. // See the full documentation at:
  1277. // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1278. func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1279. return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1280. }
  1281. //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1282. // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1283. // computes a Diffie-Hellman shared secret based on the provide params. The
  1284. // secret is written to the provided buffer and the returned size is the number
  1285. // of bytes written (returning an error if there is insufficient space in the
  1286. // buffer). If a nil buffer is passed in, this function returns the minimum
  1287. // buffer length needed to store the appropriate data. Note that this differs
  1288. // from KEYCTL_READ's behavior which always returns the requested payload size.
  1289. // See the full documentation at:
  1290. // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1291. func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1292. return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1293. }
  1294. // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
  1295. // command limits the set of keys that can be linked to the keyring, regardless
  1296. // of keyring permissions. The command requires the "setattr" permission.
  1297. //
  1298. // When called with an empty keyType the command locks the keyring, preventing
  1299. // any further keys from being linked to the keyring.
  1300. //
  1301. // The "asymmetric" keyType defines restrictions requiring key payloads to be
  1302. // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
  1303. // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
  1304. // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
  1305. //
  1306. // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
  1307. // restrictions.
  1308. //
  1309. // See the full documentation at:
  1310. // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
  1311. // http://man7.org/linux/man-pages/man2/keyctl.2.html
  1312. func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
  1313. if keyType == "" {
  1314. return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
  1315. }
  1316. return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
  1317. }
  1318. //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
  1319. //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
  1320. func recvmsgRaw(fd int, iov []Iovec, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) {
  1321. var msg Msghdr
  1322. msg.Name = (*byte)(unsafe.Pointer(rsa))
  1323. msg.Namelen = uint32(SizeofSockaddrAny)
  1324. var dummy byte
  1325. if len(oob) > 0 {
  1326. if emptyIovecs(iov) {
  1327. var sockType int
  1328. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1329. if err != nil {
  1330. return
  1331. }
  1332. // receive at least one normal byte
  1333. if sockType != SOCK_DGRAM {
  1334. var iova [1]Iovec
  1335. iova[0].Base = &dummy
  1336. iova[0].SetLen(1)
  1337. iov = iova[:]
  1338. }
  1339. }
  1340. msg.Control = &oob[0]
  1341. msg.SetControllen(len(oob))
  1342. }
  1343. if len(iov) > 0 {
  1344. msg.Iov = &iov[0]
  1345. msg.SetIovlen(len(iov))
  1346. }
  1347. if n, err = recvmsg(fd, &msg, flags); err != nil {
  1348. return
  1349. }
  1350. oobn = int(msg.Controllen)
  1351. recvflags = int(msg.Flags)
  1352. return
  1353. }
  1354. func sendmsgN(fd int, iov []Iovec, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) {
  1355. var msg Msghdr
  1356. msg.Name = (*byte)(ptr)
  1357. msg.Namelen = uint32(salen)
  1358. var dummy byte
  1359. var empty bool
  1360. if len(oob) > 0 {
  1361. empty = emptyIovecs(iov)
  1362. if empty {
  1363. var sockType int
  1364. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1365. if err != nil {
  1366. return 0, err
  1367. }
  1368. // send at least one normal byte
  1369. if sockType != SOCK_DGRAM {
  1370. var iova [1]Iovec
  1371. iova[0].Base = &dummy
  1372. iova[0].SetLen(1)
  1373. }
  1374. }
  1375. msg.Control = &oob[0]
  1376. msg.SetControllen(len(oob))
  1377. }
  1378. if len(iov) > 0 {
  1379. msg.Iov = &iov[0]
  1380. msg.SetIovlen(len(iov))
  1381. }
  1382. if n, err = sendmsg(fd, &msg, flags); err != nil {
  1383. return 0, err
  1384. }
  1385. if len(oob) > 0 && empty {
  1386. n = 0
  1387. }
  1388. return n, nil
  1389. }
  1390. // BindToDevice binds the socket associated with fd to device.
  1391. func BindToDevice(fd int, device string) (err error) {
  1392. return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1393. }
  1394. //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1395. func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1396. // The peek requests are machine-size oriented, so we wrap it
  1397. // to retrieve arbitrary-length data.
  1398. // The ptrace syscall differs from glibc's ptrace.
  1399. // Peeks returns the word in *data, not as the return value.
  1400. var buf [SizeofPtr]byte
  1401. // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1402. // access (PEEKUSER warns that it might), but if we don't
  1403. // align our reads, we might straddle an unmapped page
  1404. // boundary and not get the bytes leading up to the page
  1405. // boundary.
  1406. n := 0
  1407. if addr%SizeofPtr != 0 {
  1408. err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1409. if err != nil {
  1410. return 0, err
  1411. }
  1412. n += copy(out, buf[addr%SizeofPtr:])
  1413. out = out[n:]
  1414. }
  1415. // Remainder.
  1416. for len(out) > 0 {
  1417. // We use an internal buffer to guarantee alignment.
  1418. // It's not documented if this is necessary, but we're paranoid.
  1419. err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1420. if err != nil {
  1421. return n, err
  1422. }
  1423. copied := copy(out, buf[0:])
  1424. n += copied
  1425. out = out[copied:]
  1426. }
  1427. return n, nil
  1428. }
  1429. func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1430. return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1431. }
  1432. func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1433. return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1434. }
  1435. func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1436. return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1437. }
  1438. func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1439. // As for ptracePeek, we need to align our accesses to deal
  1440. // with the possibility of straddling an invalid page.
  1441. // Leading edge.
  1442. n := 0
  1443. if addr%SizeofPtr != 0 {
  1444. var buf [SizeofPtr]byte
  1445. err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1446. if err != nil {
  1447. return 0, err
  1448. }
  1449. n += copy(buf[addr%SizeofPtr:], data)
  1450. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1451. err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1452. if err != nil {
  1453. return 0, err
  1454. }
  1455. data = data[n:]
  1456. }
  1457. // Interior.
  1458. for len(data) > SizeofPtr {
  1459. word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1460. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1461. if err != nil {
  1462. return n, err
  1463. }
  1464. n += SizeofPtr
  1465. data = data[SizeofPtr:]
  1466. }
  1467. // Trailing edge.
  1468. if len(data) > 0 {
  1469. var buf [SizeofPtr]byte
  1470. err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1471. if err != nil {
  1472. return n, err
  1473. }
  1474. copy(buf[0:], data)
  1475. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1476. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1477. if err != nil {
  1478. return n, err
  1479. }
  1480. n += len(data)
  1481. }
  1482. return n, nil
  1483. }
  1484. func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1485. return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1486. }
  1487. func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1488. return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1489. }
  1490. func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1491. return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1492. }
  1493. func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1494. return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1495. }
  1496. func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1497. return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1498. }
  1499. func PtraceSetOptions(pid int, options int) (err error) {
  1500. return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1501. }
  1502. func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1503. var data _C_long
  1504. err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1505. msg = uint(data)
  1506. return
  1507. }
  1508. func PtraceCont(pid int, signal int) (err error) {
  1509. return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1510. }
  1511. func PtraceSyscall(pid int, signal int) (err error) {
  1512. return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1513. }
  1514. func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1515. func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
  1516. func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1517. func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
  1518. func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1519. //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1520. func Reboot(cmd int) (err error) {
  1521. return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1522. }
  1523. func direntIno(buf []byte) (uint64, bool) {
  1524. return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
  1525. }
  1526. func direntReclen(buf []byte) (uint64, bool) {
  1527. return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
  1528. }
  1529. func direntNamlen(buf []byte) (uint64, bool) {
  1530. reclen, ok := direntReclen(buf)
  1531. if !ok {
  1532. return 0, false
  1533. }
  1534. return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
  1535. }
  1536. //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1537. func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1538. // Certain file systems get rather angry and EINVAL if you give
  1539. // them an empty string of data, rather than NULL.
  1540. if data == "" {
  1541. return mount(source, target, fstype, flags, nil)
  1542. }
  1543. datap, err := BytePtrFromString(data)
  1544. if err != nil {
  1545. return err
  1546. }
  1547. return mount(source, target, fstype, flags, datap)
  1548. }
  1549. //sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
  1550. // MountSetattr is a wrapper for mount_setattr(2).
  1551. // https://man7.org/linux/man-pages/man2/mount_setattr.2.html
  1552. //
  1553. // Requires kernel >= 5.12.
  1554. func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
  1555. return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
  1556. }
  1557. func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1558. if raceenabled {
  1559. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1560. }
  1561. return sendfile(outfd, infd, offset, count)
  1562. }
  1563. // Sendto
  1564. // Recvfrom
  1565. // Socketpair
  1566. /*
  1567. * Direct access
  1568. */
  1569. //sys Acct(path string) (err error)
  1570. //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1571. //sys Adjtimex(buf *Timex) (state int, err error)
  1572. //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error)
  1573. //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error)
  1574. //sys Chdir(path string) (err error)
  1575. //sys Chroot(path string) (err error)
  1576. //sys ClockGetres(clockid int32, res *Timespec) (err error)
  1577. //sys ClockGettime(clockid int32, time *Timespec) (err error)
  1578. //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
  1579. //sys Close(fd int) (err error)
  1580. //sys CloseRange(first uint, last uint, flags uint) (err error)
  1581. //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1582. //sys DeleteModule(name string, flags int) (err error)
  1583. //sys Dup(oldfd int) (fd int, err error)
  1584. func Dup2(oldfd, newfd int) error {
  1585. return Dup3(oldfd, newfd, 0)
  1586. }
  1587. //sys Dup3(oldfd int, newfd int, flags int) (err error)
  1588. //sysnb EpollCreate1(flag int) (fd int, err error)
  1589. //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1590. //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1591. //sys Exit(code int) = SYS_EXIT_GROUP
  1592. //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1593. //sys Fchdir(fd int) (err error)
  1594. //sys Fchmod(fd int, mode uint32) (err error)
  1595. //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1596. //sys Fdatasync(fd int) (err error)
  1597. //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1598. //sys FinitModule(fd int, params string, flags int) (err error)
  1599. //sys Flistxattr(fd int, dest []byte) (sz int, err error)
  1600. //sys Flock(fd int, how int) (err error)
  1601. //sys Fremovexattr(fd int, attr string) (err error)
  1602. //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1603. //sys Fsync(fd int) (err error)
  1604. //sys Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error)
  1605. //sys Fsopen(fsName string, flags int) (fd int, err error)
  1606. //sys Fspick(dirfd int, pathName string, flags int) (fd int, err error)
  1607. //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1608. //sysnb Getpgid(pid int) (pgid int, err error)
  1609. func Getpgrp() (pid int) {
  1610. pid, _ = Getpgid(0)
  1611. return
  1612. }
  1613. //sysnb Getpid() (pid int)
  1614. //sysnb Getppid() (ppid int)
  1615. //sys Getpriority(which int, who int) (prio int, err error)
  1616. //sys Getrandom(buf []byte, flags int) (n int, err error)
  1617. //sysnb Getrusage(who int, rusage *Rusage) (err error)
  1618. //sysnb Getsid(pid int) (sid int, err error)
  1619. //sysnb Gettid() (tid int)
  1620. //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1621. //sys InitModule(moduleImage []byte, params string) (err error)
  1622. //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1623. //sysnb InotifyInit1(flags int) (fd int, err error)
  1624. //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1625. //sysnb Kill(pid int, sig syscall.Signal) (err error)
  1626. //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1627. //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1628. //sys Listxattr(path string, dest []byte) (sz int, err error)
  1629. //sys Llistxattr(path string, dest []byte) (sz int, err error)
  1630. //sys Lremovexattr(path string, attr string) (err error)
  1631. //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1632. //sys MemfdCreate(name string, flags int) (fd int, err error)
  1633. //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
  1634. //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1635. //sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error)
  1636. //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1637. //sys OpenTree(dfd int, fileName string, flags uint) (r int, err error)
  1638. //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1639. //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1640. //sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1641. //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1642. //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1643. //sys read(fd int, p []byte) (n int, err error)
  1644. //sys Removexattr(path string, attr string) (err error)
  1645. //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1646. //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1647. //sys Setdomainname(p []byte) (err error)
  1648. //sys Sethostname(p []byte) (err error)
  1649. //sysnb Setpgid(pid int, pgid int) (err error)
  1650. //sysnb Setsid() (pid int, err error)
  1651. //sysnb Settimeofday(tv *Timeval) (err error)
  1652. //sys Setns(fd int, nstype int) (err error)
  1653. // PrctlRetInt performs a prctl operation specified by option and further
  1654. // optional arguments arg2 through arg5 depending on option. It returns a
  1655. // non-negative integer that is returned by the prctl syscall.
  1656. func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
  1657. ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
  1658. if err != 0 {
  1659. return 0, err
  1660. }
  1661. return int(ret), nil
  1662. }
  1663. func Setuid(uid int) (err error) {
  1664. return syscall.Setuid(uid)
  1665. }
  1666. func Setgid(gid int) (err error) {
  1667. return syscall.Setgid(gid)
  1668. }
  1669. func Setreuid(ruid, euid int) (err error) {
  1670. return syscall.Setreuid(ruid, euid)
  1671. }
  1672. func Setregid(rgid, egid int) (err error) {
  1673. return syscall.Setregid(rgid, egid)
  1674. }
  1675. func Setresuid(ruid, euid, suid int) (err error) {
  1676. return syscall.Setresuid(ruid, euid, suid)
  1677. }
  1678. func Setresgid(rgid, egid, sgid int) (err error) {
  1679. return syscall.Setresgid(rgid, egid, sgid)
  1680. }
  1681. // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
  1682. // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
  1683. // If the call fails due to other reasons, current fsgid will be returned.
  1684. func SetfsgidRetGid(gid int) (int, error) {
  1685. return setfsgid(gid)
  1686. }
  1687. // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
  1688. // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
  1689. // If the call fails due to other reasons, current fsuid will be returned.
  1690. func SetfsuidRetUid(uid int) (int, error) {
  1691. return setfsuid(uid)
  1692. }
  1693. func Setfsgid(gid int) error {
  1694. _, err := setfsgid(gid)
  1695. return err
  1696. }
  1697. func Setfsuid(uid int) error {
  1698. _, err := setfsuid(uid)
  1699. return err
  1700. }
  1701. func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
  1702. return signalfd(fd, sigmask, _C__NSIG/8, flags)
  1703. }
  1704. //sys Setpriority(which int, who int, prio int) (err error)
  1705. //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
  1706. //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
  1707. //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1708. //sys Sync()
  1709. //sys Syncfs(fd int) (err error)
  1710. //sysnb Sysinfo(info *Sysinfo_t) (err error)
  1711. //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1712. //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error)
  1713. //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
  1714. //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
  1715. //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1716. //sysnb Times(tms *Tms) (ticks uintptr, err error)
  1717. //sysnb Umask(mask int) (oldmask int)
  1718. //sysnb Uname(buf *Utsname) (err error)
  1719. //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1720. //sys Unshare(flags int) (err error)
  1721. //sys write(fd int, p []byte) (n int, err error)
  1722. //sys exitThread(code int) (err error) = SYS_EXIT
  1723. //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1724. //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1725. //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
  1726. //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
  1727. //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
  1728. //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
  1729. //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
  1730. //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
  1731. func bytes2iovec(bs [][]byte) []Iovec {
  1732. iovecs := make([]Iovec, len(bs))
  1733. for i, b := range bs {
  1734. iovecs[i].SetLen(len(b))
  1735. if len(b) > 0 {
  1736. iovecs[i].Base = &b[0]
  1737. } else {
  1738. iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
  1739. }
  1740. }
  1741. return iovecs
  1742. }
  1743. // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
  1744. // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
  1745. // preadv/pwritev chose this calling convention so they don't need to add a
  1746. // padding-register for alignment on ARM.
  1747. func offs2lohi(offs int64) (lo, hi uintptr) {
  1748. return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
  1749. }
  1750. func Readv(fd int, iovs [][]byte) (n int, err error) {
  1751. iovecs := bytes2iovec(iovs)
  1752. n, err = readv(fd, iovecs)
  1753. readvRacedetect(iovecs, n, err)
  1754. return n, err
  1755. }
  1756. func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1757. iovecs := bytes2iovec(iovs)
  1758. lo, hi := offs2lohi(offset)
  1759. n, err = preadv(fd, iovecs, lo, hi)
  1760. readvRacedetect(iovecs, n, err)
  1761. return n, err
  1762. }
  1763. func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1764. iovecs := bytes2iovec(iovs)
  1765. lo, hi := offs2lohi(offset)
  1766. n, err = preadv2(fd, iovecs, lo, hi, flags)
  1767. readvRacedetect(iovecs, n, err)
  1768. return n, err
  1769. }
  1770. func readvRacedetect(iovecs []Iovec, n int, err error) {
  1771. if !raceenabled {
  1772. return
  1773. }
  1774. for i := 0; n > 0 && i < len(iovecs); i++ {
  1775. m := int(iovecs[i].Len)
  1776. if m > n {
  1777. m = n
  1778. }
  1779. n -= m
  1780. if m > 0 {
  1781. raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
  1782. }
  1783. }
  1784. if err == nil {
  1785. raceAcquire(unsafe.Pointer(&ioSync))
  1786. }
  1787. }
  1788. func Writev(fd int, iovs [][]byte) (n int, err error) {
  1789. iovecs := bytes2iovec(iovs)
  1790. if raceenabled {
  1791. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1792. }
  1793. n, err = writev(fd, iovecs)
  1794. writevRacedetect(iovecs, n)
  1795. return n, err
  1796. }
  1797. func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1798. iovecs := bytes2iovec(iovs)
  1799. if raceenabled {
  1800. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1801. }
  1802. lo, hi := offs2lohi(offset)
  1803. n, err = pwritev(fd, iovecs, lo, hi)
  1804. writevRacedetect(iovecs, n)
  1805. return n, err
  1806. }
  1807. func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1808. iovecs := bytes2iovec(iovs)
  1809. if raceenabled {
  1810. raceReleaseMerge(unsafe.Pointer(&ioSync))
  1811. }
  1812. lo, hi := offs2lohi(offset)
  1813. n, err = pwritev2(fd, iovecs, lo, hi, flags)
  1814. writevRacedetect(iovecs, n)
  1815. return n, err
  1816. }
  1817. func writevRacedetect(iovecs []Iovec, n int) {
  1818. if !raceenabled {
  1819. return
  1820. }
  1821. for i := 0; n > 0 && i < len(iovecs); i++ {
  1822. m := int(iovecs[i].Len)
  1823. if m > n {
  1824. m = n
  1825. }
  1826. n -= m
  1827. if m > 0 {
  1828. raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
  1829. }
  1830. }
  1831. }
  1832. // mmap varies by architecture; see syscall_linux_*.go.
  1833. //sys munmap(addr uintptr, length uintptr) (err error)
  1834. var mapper = &mmapper{
  1835. active: make(map[*byte][]byte),
  1836. mmap: mmap,
  1837. munmap: munmap,
  1838. }
  1839. func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1840. return mapper.Mmap(fd, offset, length, prot, flags)
  1841. }
  1842. func Munmap(b []byte) (err error) {
  1843. return mapper.Munmap(b)
  1844. }
  1845. //sys Madvise(b []byte, advice int) (err error)
  1846. //sys Mprotect(b []byte, prot int) (err error)
  1847. //sys Mlock(b []byte) (err error)
  1848. //sys Mlockall(flags int) (err error)
  1849. //sys Msync(b []byte, flags int) (err error)
  1850. //sys Munlock(b []byte) (err error)
  1851. //sys Munlockall() (err error)
  1852. // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1853. // using the specified flags.
  1854. func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1855. var p unsafe.Pointer
  1856. if len(iovs) > 0 {
  1857. p = unsafe.Pointer(&iovs[0])
  1858. }
  1859. n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  1860. if errno != 0 {
  1861. return 0, syscall.Errno(errno)
  1862. }
  1863. return int(n), nil
  1864. }
  1865. func isGroupMember(gid int) bool {
  1866. groups, err := Getgroups()
  1867. if err != nil {
  1868. return false
  1869. }
  1870. for _, g := range groups {
  1871. if g == gid {
  1872. return true
  1873. }
  1874. }
  1875. return false
  1876. }
  1877. //sys faccessat(dirfd int, path string, mode uint32) (err error)
  1878. //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
  1879. func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1880. if flags == 0 {
  1881. return faccessat(dirfd, path, mode)
  1882. }
  1883. if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
  1884. return err
  1885. }
  1886. // The Linux kernel faccessat system call does not take any flags.
  1887. // The glibc faccessat implements the flags itself; see
  1888. // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1889. // Because people naturally expect syscall.Faccessat to act
  1890. // like C faccessat, we do the same.
  1891. if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1892. return EINVAL
  1893. }
  1894. var st Stat_t
  1895. if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1896. return err
  1897. }
  1898. mode &= 7
  1899. if mode == 0 {
  1900. return nil
  1901. }
  1902. var uid int
  1903. if flags&AT_EACCESS != 0 {
  1904. uid = Geteuid()
  1905. } else {
  1906. uid = Getuid()
  1907. }
  1908. if uid == 0 {
  1909. if mode&1 == 0 {
  1910. // Root can read and write any file.
  1911. return nil
  1912. }
  1913. if st.Mode&0111 != 0 {
  1914. // Root can execute any file that anybody can execute.
  1915. return nil
  1916. }
  1917. return EACCES
  1918. }
  1919. var fmode uint32
  1920. if uint32(uid) == st.Uid {
  1921. fmode = (st.Mode >> 6) & 7
  1922. } else {
  1923. var gid int
  1924. if flags&AT_EACCESS != 0 {
  1925. gid = Getegid()
  1926. } else {
  1927. gid = Getgid()
  1928. }
  1929. if uint32(gid) == st.Gid || isGroupMember(int(st.Gid)) {
  1930. fmode = (st.Mode >> 3) & 7
  1931. } else {
  1932. fmode = st.Mode & 7
  1933. }
  1934. }
  1935. if fmode&mode == mode {
  1936. return nil
  1937. }
  1938. return EACCES
  1939. }
  1940. //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
  1941. //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
  1942. // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
  1943. // originally tried to generate it via unix/linux/types.go with "type
  1944. // fileHandle C.struct_file_handle" but that generated empty structs
  1945. // for mips64 and mips64le. Instead, hard code it for now (it's the
  1946. // same everywhere else) until the mips64 generator issue is fixed.
  1947. type fileHandle struct {
  1948. Bytes uint32
  1949. Type int32
  1950. }
  1951. // FileHandle represents the C struct file_handle used by
  1952. // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
  1953. // OpenByHandleAt).
  1954. type FileHandle struct {
  1955. *fileHandle
  1956. }
  1957. // NewFileHandle constructs a FileHandle.
  1958. func NewFileHandle(handleType int32, handle []byte) FileHandle {
  1959. const hdrSize = unsafe.Sizeof(fileHandle{})
  1960. buf := make([]byte, hdrSize+uintptr(len(handle)))
  1961. copy(buf[hdrSize:], handle)
  1962. fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  1963. fh.Type = handleType
  1964. fh.Bytes = uint32(len(handle))
  1965. return FileHandle{fh}
  1966. }
  1967. func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
  1968. func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
  1969. func (fh *FileHandle) Bytes() []byte {
  1970. n := fh.Size()
  1971. if n == 0 {
  1972. return nil
  1973. }
  1974. return unsafe.Slice((*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type))+4)), n)
  1975. }
  1976. // NameToHandleAt wraps the name_to_handle_at system call; it obtains
  1977. // a handle for a path name.
  1978. func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
  1979. var mid _C_int
  1980. // Try first with a small buffer, assuming the handle will
  1981. // only be 32 bytes.
  1982. size := uint32(32 + unsafe.Sizeof(fileHandle{}))
  1983. didResize := false
  1984. for {
  1985. buf := make([]byte, size)
  1986. fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  1987. fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
  1988. err = nameToHandleAt(dirfd, path, fh, &mid, flags)
  1989. if err == EOVERFLOW {
  1990. if didResize {
  1991. // We shouldn't need to resize more than once
  1992. return
  1993. }
  1994. didResize = true
  1995. size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
  1996. continue
  1997. }
  1998. if err != nil {
  1999. return
  2000. }
  2001. return FileHandle{fh}, int(mid), nil
  2002. }
  2003. }
  2004. // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
  2005. // file via a handle as previously returned by NameToHandleAt.
  2006. func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
  2007. return openByHandleAt(mountFD, handle.fileHandle, flags)
  2008. }
  2009. // Klogset wraps the sys_syslog system call; it sets console_loglevel to
  2010. // the value specified by arg and passes a dummy pointer to bufp.
  2011. func Klogset(typ int, arg int) (err error) {
  2012. var p unsafe.Pointer
  2013. _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
  2014. if errno != 0 {
  2015. return errnoErr(errno)
  2016. }
  2017. return nil
  2018. }
  2019. // RemoteIovec is Iovec with the pointer replaced with an integer.
  2020. // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
  2021. // refers to a location in a different process' address space, which
  2022. // would confuse the Go garbage collector.
  2023. type RemoteIovec struct {
  2024. Base uintptr
  2025. Len int
  2026. }
  2027. //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
  2028. //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
  2029. //sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
  2030. //sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
  2031. //sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL
  2032. //sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
  2033. //sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
  2034. //sys shmdt(addr uintptr) (err error)
  2035. //sys shmget(key int, size int, flag int) (id int, err error)
  2036. //sys getitimer(which int, currValue *Itimerval) (err error)
  2037. //sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
  2038. // MakeItimerval creates an Itimerval from interval and value durations.
  2039. func MakeItimerval(interval, value time.Duration) Itimerval {
  2040. return Itimerval{
  2041. Interval: NsecToTimeval(interval.Nanoseconds()),
  2042. Value: NsecToTimeval(value.Nanoseconds()),
  2043. }
  2044. }
  2045. // A value which may be passed to the which parameter for Getitimer and
  2046. // Setitimer.
  2047. type ItimerWhich int
  2048. // Possible which values for Getitimer and Setitimer.
  2049. const (
  2050. ItimerReal ItimerWhich = ITIMER_REAL
  2051. ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
  2052. ItimerProf ItimerWhich = ITIMER_PROF
  2053. )
  2054. // Getitimer wraps getitimer(2) to return the current value of the timer
  2055. // specified by which.
  2056. func Getitimer(which ItimerWhich) (Itimerval, error) {
  2057. var it Itimerval
  2058. if err := getitimer(int(which), &it); err != nil {
  2059. return Itimerval{}, err
  2060. }
  2061. return it, nil
  2062. }
  2063. // Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
  2064. // It returns the previous value of the timer.
  2065. //
  2066. // If the Itimerval argument is the zero value, the timer will be disarmed.
  2067. func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) {
  2068. var prev Itimerval
  2069. if err := setitimer(int(which), &it, &prev); err != nil {
  2070. return Itimerval{}, err
  2071. }
  2072. return prev, nil
  2073. }
  2074. //sysnb rtSigprocmask(how int, set *Sigset_t, oldset *Sigset_t, sigsetsize uintptr) (err error) = SYS_RT_SIGPROCMASK
  2075. func PthreadSigmask(how int, set, oldset *Sigset_t) error {
  2076. if oldset != nil {
  2077. // Explicitly clear in case Sigset_t is larger than _C__NSIG.
  2078. *oldset = Sigset_t{}
  2079. }
  2080. return rtSigprocmask(how, set, oldset, _C__NSIG/8)
  2081. }
  2082. /*
  2083. * Unimplemented
  2084. */
  2085. // AfsSyscall
  2086. // ArchPrctl
  2087. // Brk
  2088. // ClockNanosleep
  2089. // ClockSettime
  2090. // Clone
  2091. // EpollCtlOld
  2092. // EpollPwait
  2093. // EpollWaitOld
  2094. // Execve
  2095. // Fork
  2096. // Futex
  2097. // GetKernelSyms
  2098. // GetMempolicy
  2099. // GetRobustList
  2100. // GetThreadArea
  2101. // Getpmsg
  2102. // IoCancel
  2103. // IoDestroy
  2104. // IoGetevents
  2105. // IoSetup
  2106. // IoSubmit
  2107. // IoprioGet
  2108. // IoprioSet
  2109. // KexecLoad
  2110. // LookupDcookie
  2111. // Mbind
  2112. // MigratePages
  2113. // Mincore
  2114. // ModifyLdt
  2115. // Mount
  2116. // MovePages
  2117. // MqGetsetattr
  2118. // MqNotify
  2119. // MqOpen
  2120. // MqTimedreceive
  2121. // MqTimedsend
  2122. // MqUnlink
  2123. // Mremap
  2124. // Msgctl
  2125. // Msgget
  2126. // Msgrcv
  2127. // Msgsnd
  2128. // Nfsservctl
  2129. // Personality
  2130. // Pselect6
  2131. // Ptrace
  2132. // Putpmsg
  2133. // Quotactl
  2134. // Readahead
  2135. // Readv
  2136. // RemapFilePages
  2137. // RestartSyscall
  2138. // RtSigaction
  2139. // RtSigpending
  2140. // RtSigqueueinfo
  2141. // RtSigreturn
  2142. // RtSigsuspend
  2143. // RtSigtimedwait
  2144. // SchedGetPriorityMax
  2145. // SchedGetPriorityMin
  2146. // SchedGetparam
  2147. // SchedGetscheduler
  2148. // SchedRrGetInterval
  2149. // SchedSetparam
  2150. // SchedYield
  2151. // Security
  2152. // Semctl
  2153. // Semget
  2154. // Semop
  2155. // Semtimedop
  2156. // SetMempolicy
  2157. // SetRobustList
  2158. // SetThreadArea
  2159. // SetTidAddress
  2160. // Sigaltstack
  2161. // Swapoff
  2162. // Swapon
  2163. // Sysfs
  2164. // TimerCreate
  2165. // TimerDelete
  2166. // TimerGetoverrun
  2167. // TimerGettime
  2168. // TimerSettime
  2169. // Tkill (obsolete)
  2170. // Tuxcall
  2171. // Umount2
  2172. // Uselib
  2173. // Utimensat
  2174. // Vfork
  2175. // Vhangup
  2176. // Vserver
  2177. // _Sysctl