// Package xxhash implements the 64-bit variant of xxHash (XXH64) as described // at http://cyan4973.github.io/xxHash/. package xxhash import ( "encoding/binary" "errors" "math/bits" ) const ( prime1 uint64 = 11400714785074694791 prime2 uint64 = 14029467366897019727 prime3 uint64 = 1609587929392839161 prime4 uint64 = 9650029242287828579 prime5 uint64 = 2870177450012600261 ) // NOTE(caleb): I'm using both consts and vars of the primes. Using consts where // possible in the Go code is worth a small (but measurable) performance boost // by avoiding some MOVQs. Vars are needed for the asm and also are useful for // convenience in the Go code in a few places where we need to intentionally // avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the // result overflows a uint64). var ( prime1v = prime1 prime2v = prime2 prime3v = prime3 prime4v = prime4 prime5v = prime5 ) // Digest implements hash.Hash64. type Digest struct { v1 uint64 v2 uint64 v3 uint64 v4 uint64 total uint64 mem [32]byte n int // how much of mem is used } // New creates a new Digest that computes the 64-bit xxHash algorithm. func New() *Digest { var d Digest d.Reset() return &d } // Reset clears the Digest's state so that it can be reused. func (d *Digest) Reset() { d.v1 = prime1v + prime2 d.v2 = prime2 d.v3 = 0 d.v4 = -prime1v d.total = 0 d.n = 0 } // Size always returns 8 bytes. func (d *Digest) Size() int { return 8 } // BlockSize always returns 32 bytes. func (d *Digest) BlockSize() int { return 32 } // Write adds more data to d. It always returns len(b), nil. func (d *Digest) Write(b []byte) (n int, err error) { n = len(b) d.total += uint64(n) if d.n+n < 32 { // This new data doesn't even fill the current block. copy(d.mem[d.n:], b) d.n += n return } if d.n > 0 { // Finish off the partial block. copy(d.mem[d.n:], b) d.v1 = round(d.v1, u64(d.mem[0:8])) d.v2 = round(d.v2, u64(d.mem[8:16])) d.v3 = round(d.v3, u64(d.mem[16:24])) d.v4 = round(d.v4, u64(d.mem[24:32])) b = b[32-d.n:] d.n = 0 } if len(b) >= 32 { // One or more full blocks left. nw := writeBlocks(d, b) b = b[nw:] } // Store any remaining partial block. copy(d.mem[:], b) d.n = len(b) return } // Sum appends the current hash to b and returns the resulting slice. func (d *Digest) Sum(b []byte) []byte { s := d.Sum64() return append( b, byte(s>>56), byte(s>>48), byte(s>>40), byte(s>>32), byte(s>>24), byte(s>>16), byte(s>>8), byte(s), ) } // Sum64 returns the current hash. func (d *Digest) Sum64() uint64 { var h uint64 if d.total >= 32 { v1, v2, v3, v4 := d.v1, d.v2, d.v3, d.v4 h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4) h = mergeRound(h, v1) h = mergeRound(h, v2) h = mergeRound(h, v3) h = mergeRound(h, v4) } else { h = d.v3 + prime5 } h += d.total i, end := 0, d.n for ; i+8 <= end; i += 8 { k1 := round(0, u64(d.mem[i:i+8])) h ^= k1 h = rol27(h)*prime1 + prime4 } if i+4 <= end { h ^= uint64(u32(d.mem[i:i+4])) * prime1 h = rol23(h)*prime2 + prime3 i += 4 } for i < end { h ^= uint64(d.mem[i]) * prime5 h = rol11(h) * prime1 i++ } h ^= h >> 33 h *= prime2 h ^= h >> 29 h *= prime3 h ^= h >> 32 return h } const ( magic = "xxh\x06" marshaledSize = len(magic) + 8*5 + 32 ) // MarshalBinary implements the encoding.BinaryMarshaler interface. func (d *Digest) MarshalBinary() ([]byte, error) { b := make([]byte, 0, marshaledSize) b = append(b, magic...) b = appendUint64(b, d.v1) b = appendUint64(b, d.v2) b = appendUint64(b, d.v3) b = appendUint64(b, d.v4) b = appendUint64(b, d.total) b = append(b, d.mem[:d.n]...) b = b[:len(b)+len(d.mem)-d.n] return b, nil } // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. func (d *Digest) UnmarshalBinary(b []byte) error { if len(b) < len(magic) || string(b[:len(magic)]) != magic { return errors.New("xxhash: invalid hash state identifier") } if len(b) != marshaledSize { return errors.New("xxhash: invalid hash state size") } b = b[len(magic):] b, d.v1 = consumeUint64(b) b, d.v2 = consumeUint64(b) b, d.v3 = consumeUint64(b) b, d.v4 = consumeUint64(b) b, d.total = consumeUint64(b) copy(d.mem[:], b) d.n = int(d.total % uint64(len(d.mem))) return nil } func appendUint64(b []byte, x uint64) []byte { var a [8]byte binary.LittleEndian.PutUint64(a[:], x) return append(b, a[:]...) } func consumeUint64(b []byte) ([]byte, uint64) { x := u64(b) return b[8:], x } func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) } func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) } func round(acc, input uint64) uint64 { acc += input * prime2 acc = rol31(acc) acc *= prime1 return acc } func mergeRound(acc, val uint64) uint64 { val = round(0, val) acc ^= val acc = acc*prime1 + prime4 return acc } func rol1(x uint64) uint64 { return bits.RotateLeft64(x, 1) } func rol7(x uint64) uint64 { return bits.RotateLeft64(x, 7) } func rol11(x uint64) uint64 { return bits.RotateLeft64(x, 11) } func rol12(x uint64) uint64 { return bits.RotateLeft64(x, 12) } func rol18(x uint64) uint64 { return bits.RotateLeft64(x, 18) } func rol23(x uint64) uint64 { return bits.RotateLeft64(x, 23) } func rol27(x uint64) uint64 { return bits.RotateLeft64(x, 27) } func rol31(x uint64) uint64 { return bits.RotateLeft64(x, 31) }