// Copyright 2017, OpenCensus Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // package view import ( "math" "go.opencensus.io/exemplar" ) // AggregationData represents an aggregated value from a collection. // They are reported on the view data during exporting. // Mosts users won't directly access aggregration data. type AggregationData interface { isAggregationData() bool addSample(e *exemplar.Exemplar) clone() AggregationData equal(other AggregationData) bool } const epsilon = 1e-9 // CountData is the aggregated data for the Count aggregation. // A count aggregation processes data and counts the recordings. // // Most users won't directly access count data. type CountData struct { Value int64 } func (a *CountData) isAggregationData() bool { return true } func (a *CountData) addSample(_ *exemplar.Exemplar) { a.Value = a.Value + 1 } func (a *CountData) clone() AggregationData { return &CountData{Value: a.Value} } func (a *CountData) equal(other AggregationData) bool { a2, ok := other.(*CountData) if !ok { return false } return a.Value == a2.Value } // SumData is the aggregated data for the Sum aggregation. // A sum aggregation processes data and sums up the recordings. // // Most users won't directly access sum data. type SumData struct { Value float64 } func (a *SumData) isAggregationData() bool { return true } func (a *SumData) addSample(e *exemplar.Exemplar) { a.Value += e.Value } func (a *SumData) clone() AggregationData { return &SumData{Value: a.Value} } func (a *SumData) equal(other AggregationData) bool { a2, ok := other.(*SumData) if !ok { return false } return math.Pow(a.Value-a2.Value, 2) < epsilon } // DistributionData is the aggregated data for the // Distribution aggregation. // // Most users won't directly access distribution data. // // For a distribution with N bounds, the associated DistributionData will have // N+1 buckets. type DistributionData struct { Count int64 // number of data points aggregated Min float64 // minimum value in the distribution Max float64 // max value in the distribution Mean float64 // mean of the distribution SumOfSquaredDev float64 // sum of the squared deviation from the mean CountPerBucket []int64 // number of occurrences per bucket // ExemplarsPerBucket is slice the same length as CountPerBucket containing // an exemplar for the associated bucket, or nil. ExemplarsPerBucket []*exemplar.Exemplar bounds []float64 // histogram distribution of the values } func newDistributionData(bounds []float64) *DistributionData { bucketCount := len(bounds) + 1 return &DistributionData{ CountPerBucket: make([]int64, bucketCount), ExemplarsPerBucket: make([]*exemplar.Exemplar, bucketCount), bounds: bounds, Min: math.MaxFloat64, Max: math.SmallestNonzeroFloat64, } } // Sum returns the sum of all samples collected. func (a *DistributionData) Sum() float64 { return a.Mean * float64(a.Count) } func (a *DistributionData) variance() float64 { if a.Count <= 1 { return 0 } return a.SumOfSquaredDev / float64(a.Count-1) } func (a *DistributionData) isAggregationData() bool { return true } func (a *DistributionData) addSample(e *exemplar.Exemplar) { f := e.Value if f < a.Min { a.Min = f } if f > a.Max { a.Max = f } a.Count++ a.addToBucket(e) if a.Count == 1 { a.Mean = f return } oldMean := a.Mean a.Mean = a.Mean + (f-a.Mean)/float64(a.Count) a.SumOfSquaredDev = a.SumOfSquaredDev + (f-oldMean)*(f-a.Mean) } func (a *DistributionData) addToBucket(e *exemplar.Exemplar) { var count *int64 var ex **exemplar.Exemplar for i, b := range a.bounds { if e.Value < b { count = &a.CountPerBucket[i] ex = &a.ExemplarsPerBucket[i] break } } if count == nil { count = &a.CountPerBucket[len(a.bounds)] ex = &a.ExemplarsPerBucket[len(a.bounds)] } *count++ *ex = maybeRetainExemplar(*ex, e) } func maybeRetainExemplar(old, cur *exemplar.Exemplar) *exemplar.Exemplar { if old == nil { return cur } // Heuristic to pick the "better" exemplar: first keep the one with a // sampled trace attachment, if neither have a trace attachment, pick the // one with more attachments. _, haveTraceID := cur.Attachments[exemplar.KeyTraceID] if haveTraceID || len(cur.Attachments) >= len(old.Attachments) { return cur } return old } func (a *DistributionData) clone() AggregationData { c := *a c.CountPerBucket = append([]int64(nil), a.CountPerBucket...) c.ExemplarsPerBucket = append([]*exemplar.Exemplar(nil), a.ExemplarsPerBucket...) return &c } func (a *DistributionData) equal(other AggregationData) bool { a2, ok := other.(*DistributionData) if !ok { return false } if a2 == nil { return false } if len(a.CountPerBucket) != len(a2.CountPerBucket) { return false } for i := range a.CountPerBucket { if a.CountPerBucket[i] != a2.CountPerBucket[i] { return false } } return a.Count == a2.Count && a.Min == a2.Min && a.Max == a2.Max && math.Pow(a.Mean-a2.Mean, 2) < epsilon && math.Pow(a.variance()-a2.variance(), 2) < epsilon } // LastValueData returns the last value recorded for LastValue aggregation. type LastValueData struct { Value float64 } func (l *LastValueData) isAggregationData() bool { return true } func (l *LastValueData) addSample(e *exemplar.Exemplar) { l.Value = e.Value } func (l *LastValueData) clone() AggregationData { return &LastValueData{l.Value} } func (l *LastValueData) equal(other AggregationData) bool { a2, ok := other.(*LastValueData) if !ok { return false } return l.Value == a2.Value }