Non puoi selezionare più di 25 argomenti Gli argomenti devono iniziare con una lettera o un numero, possono includere trattini ('-') e possono essere lunghi fino a 35 caratteri.
 
 
 

1540 righe
43 KiB

  1. // Copyright 2009 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // Linux system calls.
  5. // This file is compiled as ordinary Go code,
  6. // but it is also input to mksyscall,
  7. // which parses the //sys lines and generates system call stubs.
  8. // Note that sometimes we use a lowercase //sys name and
  9. // wrap it in our own nicer implementation.
  10. package unix
  11. import (
  12. "syscall"
  13. "unsafe"
  14. )
  15. /*
  16. * Wrapped
  17. */
  18. func Access(path string, mode uint32) (err error) {
  19. return Faccessat(AT_FDCWD, path, mode, 0)
  20. }
  21. func Chmod(path string, mode uint32) (err error) {
  22. return Fchmodat(AT_FDCWD, path, mode, 0)
  23. }
  24. func Chown(path string, uid int, gid int) (err error) {
  25. return Fchownat(AT_FDCWD, path, uid, gid, 0)
  26. }
  27. func Creat(path string, mode uint32) (fd int, err error) {
  28. return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
  29. }
  30. //sys fchmodat(dirfd int, path string, mode uint32) (err error)
  31. func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
  32. // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
  33. // and check the flags. Otherwise the mode would be applied to the symlink
  34. // destination which is not what the user expects.
  35. if flags&^AT_SYMLINK_NOFOLLOW != 0 {
  36. return EINVAL
  37. } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
  38. return EOPNOTSUPP
  39. }
  40. return fchmodat(dirfd, path, mode)
  41. }
  42. //sys ioctl(fd int, req uint, arg uintptr) (err error)
  43. // ioctl itself should not be exposed directly, but additional get/set
  44. // functions for specific types are permissible.
  45. // IoctlSetInt performs an ioctl operation which sets an integer value
  46. // on fd, using the specified request number.
  47. func IoctlSetInt(fd int, req uint, value int) error {
  48. return ioctl(fd, req, uintptr(value))
  49. }
  50. func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
  51. return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
  52. }
  53. func IoctlSetTermios(fd int, req uint, value *Termios) error {
  54. return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
  55. }
  56. // IoctlGetInt performs an ioctl operation which gets an integer value
  57. // from fd, using the specified request number.
  58. func IoctlGetInt(fd int, req uint) (int, error) {
  59. var value int
  60. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  61. return value, err
  62. }
  63. func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
  64. var value Winsize
  65. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  66. return &value, err
  67. }
  68. func IoctlGetTermios(fd int, req uint) (*Termios, error) {
  69. var value Termios
  70. err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
  71. return &value, err
  72. }
  73. //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
  74. func Link(oldpath string, newpath string) (err error) {
  75. return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
  76. }
  77. func Mkdir(path string, mode uint32) (err error) {
  78. return Mkdirat(AT_FDCWD, path, mode)
  79. }
  80. func Mknod(path string, mode uint32, dev int) (err error) {
  81. return Mknodat(AT_FDCWD, path, mode, dev)
  82. }
  83. func Open(path string, mode int, perm uint32) (fd int, err error) {
  84. return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
  85. }
  86. //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
  87. func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
  88. return openat(dirfd, path, flags|O_LARGEFILE, mode)
  89. }
  90. //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
  91. func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
  92. if len(fds) == 0 {
  93. return ppoll(nil, 0, timeout, sigmask)
  94. }
  95. return ppoll(&fds[0], len(fds), timeout, sigmask)
  96. }
  97. //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
  98. func Readlink(path string, buf []byte) (n int, err error) {
  99. return Readlinkat(AT_FDCWD, path, buf)
  100. }
  101. func Rename(oldpath string, newpath string) (err error) {
  102. return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
  103. }
  104. func Rmdir(path string) error {
  105. return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
  106. }
  107. //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
  108. func Symlink(oldpath string, newpath string) (err error) {
  109. return Symlinkat(oldpath, AT_FDCWD, newpath)
  110. }
  111. func Unlink(path string) error {
  112. return Unlinkat(AT_FDCWD, path, 0)
  113. }
  114. //sys Unlinkat(dirfd int, path string, flags int) (err error)
  115. func Utimes(path string, tv []Timeval) error {
  116. if tv == nil {
  117. err := utimensat(AT_FDCWD, path, nil, 0)
  118. if err != ENOSYS {
  119. return err
  120. }
  121. return utimes(path, nil)
  122. }
  123. if len(tv) != 2 {
  124. return EINVAL
  125. }
  126. var ts [2]Timespec
  127. ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
  128. ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
  129. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  130. if err != ENOSYS {
  131. return err
  132. }
  133. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  134. }
  135. //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
  136. func UtimesNano(path string, ts []Timespec) error {
  137. if ts == nil {
  138. err := utimensat(AT_FDCWD, path, nil, 0)
  139. if err != ENOSYS {
  140. return err
  141. }
  142. return utimes(path, nil)
  143. }
  144. if len(ts) != 2 {
  145. return EINVAL
  146. }
  147. err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
  148. if err != ENOSYS {
  149. return err
  150. }
  151. // If the utimensat syscall isn't available (utimensat was added to Linux
  152. // in 2.6.22, Released, 8 July 2007) then fall back to utimes
  153. var tv [2]Timeval
  154. for i := 0; i < 2; i++ {
  155. tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
  156. }
  157. return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  158. }
  159. func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
  160. if ts == nil {
  161. return utimensat(dirfd, path, nil, flags)
  162. }
  163. if len(ts) != 2 {
  164. return EINVAL
  165. }
  166. return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
  167. }
  168. func Futimesat(dirfd int, path string, tv []Timeval) error {
  169. if tv == nil {
  170. return futimesat(dirfd, path, nil)
  171. }
  172. if len(tv) != 2 {
  173. return EINVAL
  174. }
  175. return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
  176. }
  177. func Futimes(fd int, tv []Timeval) (err error) {
  178. // Believe it or not, this is the best we can do on Linux
  179. // (and is what glibc does).
  180. return Utimes("/proc/self/fd/"+itoa(fd), tv)
  181. }
  182. const ImplementsGetwd = true
  183. //sys Getcwd(buf []byte) (n int, err error)
  184. func Getwd() (wd string, err error) {
  185. var buf [PathMax]byte
  186. n, err := Getcwd(buf[0:])
  187. if err != nil {
  188. return "", err
  189. }
  190. // Getcwd returns the number of bytes written to buf, including the NUL.
  191. if n < 1 || n > len(buf) || buf[n-1] != 0 {
  192. return "", EINVAL
  193. }
  194. return string(buf[0 : n-1]), nil
  195. }
  196. func Getgroups() (gids []int, err error) {
  197. n, err := getgroups(0, nil)
  198. if err != nil {
  199. return nil, err
  200. }
  201. if n == 0 {
  202. return nil, nil
  203. }
  204. // Sanity check group count. Max is 1<<16 on Linux.
  205. if n < 0 || n > 1<<20 {
  206. return nil, EINVAL
  207. }
  208. a := make([]_Gid_t, n)
  209. n, err = getgroups(n, &a[0])
  210. if err != nil {
  211. return nil, err
  212. }
  213. gids = make([]int, n)
  214. for i, v := range a[0:n] {
  215. gids[i] = int(v)
  216. }
  217. return
  218. }
  219. func Setgroups(gids []int) (err error) {
  220. if len(gids) == 0 {
  221. return setgroups(0, nil)
  222. }
  223. a := make([]_Gid_t, len(gids))
  224. for i, v := range gids {
  225. a[i] = _Gid_t(v)
  226. }
  227. return setgroups(len(a), &a[0])
  228. }
  229. type WaitStatus uint32
  230. // Wait status is 7 bits at bottom, either 0 (exited),
  231. // 0x7F (stopped), or a signal number that caused an exit.
  232. // The 0x80 bit is whether there was a core dump.
  233. // An extra number (exit code, signal causing a stop)
  234. // is in the high bits. At least that's the idea.
  235. // There are various irregularities. For example, the
  236. // "continued" status is 0xFFFF, distinguishing itself
  237. // from stopped via the core dump bit.
  238. const (
  239. mask = 0x7F
  240. core = 0x80
  241. exited = 0x00
  242. stopped = 0x7F
  243. shift = 8
  244. )
  245. func (w WaitStatus) Exited() bool { return w&mask == exited }
  246. func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
  247. func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
  248. func (w WaitStatus) Continued() bool { return w == 0xFFFF }
  249. func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
  250. func (w WaitStatus) ExitStatus() int {
  251. if !w.Exited() {
  252. return -1
  253. }
  254. return int(w>>shift) & 0xFF
  255. }
  256. func (w WaitStatus) Signal() syscall.Signal {
  257. if !w.Signaled() {
  258. return -1
  259. }
  260. return syscall.Signal(w & mask)
  261. }
  262. func (w WaitStatus) StopSignal() syscall.Signal {
  263. if !w.Stopped() {
  264. return -1
  265. }
  266. return syscall.Signal(w>>shift) & 0xFF
  267. }
  268. func (w WaitStatus) TrapCause() int {
  269. if w.StopSignal() != SIGTRAP {
  270. return -1
  271. }
  272. return int(w>>shift) >> 8
  273. }
  274. //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
  275. func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
  276. var status _C_int
  277. wpid, err = wait4(pid, &status, options, rusage)
  278. if wstatus != nil {
  279. *wstatus = WaitStatus(status)
  280. }
  281. return
  282. }
  283. func Mkfifo(path string, mode uint32) error {
  284. return Mknod(path, mode|S_IFIFO, 0)
  285. }
  286. func Mkfifoat(dirfd int, path string, mode uint32) error {
  287. return Mknodat(dirfd, path, mode|S_IFIFO, 0)
  288. }
  289. func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
  290. if sa.Port < 0 || sa.Port > 0xFFFF {
  291. return nil, 0, EINVAL
  292. }
  293. sa.raw.Family = AF_INET
  294. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  295. p[0] = byte(sa.Port >> 8)
  296. p[1] = byte(sa.Port)
  297. for i := 0; i < len(sa.Addr); i++ {
  298. sa.raw.Addr[i] = sa.Addr[i]
  299. }
  300. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
  301. }
  302. func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
  303. if sa.Port < 0 || sa.Port > 0xFFFF {
  304. return nil, 0, EINVAL
  305. }
  306. sa.raw.Family = AF_INET6
  307. p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
  308. p[0] = byte(sa.Port >> 8)
  309. p[1] = byte(sa.Port)
  310. sa.raw.Scope_id = sa.ZoneId
  311. for i := 0; i < len(sa.Addr); i++ {
  312. sa.raw.Addr[i] = sa.Addr[i]
  313. }
  314. return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
  315. }
  316. func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
  317. name := sa.Name
  318. n := len(name)
  319. if n >= len(sa.raw.Path) {
  320. return nil, 0, EINVAL
  321. }
  322. sa.raw.Family = AF_UNIX
  323. for i := 0; i < n; i++ {
  324. sa.raw.Path[i] = int8(name[i])
  325. }
  326. // length is family (uint16), name, NUL.
  327. sl := _Socklen(2)
  328. if n > 0 {
  329. sl += _Socklen(n) + 1
  330. }
  331. if sa.raw.Path[0] == '@' {
  332. sa.raw.Path[0] = 0
  333. // Don't count trailing NUL for abstract address.
  334. sl--
  335. }
  336. return unsafe.Pointer(&sa.raw), sl, nil
  337. }
  338. // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
  339. type SockaddrLinklayer struct {
  340. Protocol uint16
  341. Ifindex int
  342. Hatype uint16
  343. Pkttype uint8
  344. Halen uint8
  345. Addr [8]byte
  346. raw RawSockaddrLinklayer
  347. }
  348. func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
  349. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  350. return nil, 0, EINVAL
  351. }
  352. sa.raw.Family = AF_PACKET
  353. sa.raw.Protocol = sa.Protocol
  354. sa.raw.Ifindex = int32(sa.Ifindex)
  355. sa.raw.Hatype = sa.Hatype
  356. sa.raw.Pkttype = sa.Pkttype
  357. sa.raw.Halen = sa.Halen
  358. for i := 0; i < len(sa.Addr); i++ {
  359. sa.raw.Addr[i] = sa.Addr[i]
  360. }
  361. return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
  362. }
  363. // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
  364. type SockaddrNetlink struct {
  365. Family uint16
  366. Pad uint16
  367. Pid uint32
  368. Groups uint32
  369. raw RawSockaddrNetlink
  370. }
  371. func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
  372. sa.raw.Family = AF_NETLINK
  373. sa.raw.Pad = sa.Pad
  374. sa.raw.Pid = sa.Pid
  375. sa.raw.Groups = sa.Groups
  376. return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
  377. }
  378. // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
  379. // using the HCI protocol.
  380. type SockaddrHCI struct {
  381. Dev uint16
  382. Channel uint16
  383. raw RawSockaddrHCI
  384. }
  385. func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
  386. sa.raw.Family = AF_BLUETOOTH
  387. sa.raw.Dev = sa.Dev
  388. sa.raw.Channel = sa.Channel
  389. return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
  390. }
  391. // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
  392. // using the L2CAP protocol.
  393. type SockaddrL2 struct {
  394. PSM uint16
  395. CID uint16
  396. Addr [6]uint8
  397. AddrType uint8
  398. raw RawSockaddrL2
  399. }
  400. func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
  401. sa.raw.Family = AF_BLUETOOTH
  402. psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
  403. psm[0] = byte(sa.PSM)
  404. psm[1] = byte(sa.PSM >> 8)
  405. for i := 0; i < len(sa.Addr); i++ {
  406. sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
  407. }
  408. cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
  409. cid[0] = byte(sa.CID)
  410. cid[1] = byte(sa.CID >> 8)
  411. sa.raw.Bdaddr_type = sa.AddrType
  412. return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
  413. }
  414. // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
  415. // using the RFCOMM protocol.
  416. //
  417. // Server example:
  418. //
  419. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  420. // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
  421. // Channel: 1,
  422. // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
  423. // })
  424. // _ = Listen(fd, 1)
  425. // nfd, sa, _ := Accept(fd)
  426. // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
  427. // Read(nfd, buf)
  428. //
  429. // Client example:
  430. //
  431. // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
  432. // _ = Connect(fd, &SockaddrRFCOMM{
  433. // Channel: 1,
  434. // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
  435. // })
  436. // Write(fd, []byte(`hello`))
  437. type SockaddrRFCOMM struct {
  438. // Addr represents a bluetooth address, byte ordering is little-endian.
  439. Addr [6]uint8
  440. // Channel is a designated bluetooth channel, only 1-30 are available for use.
  441. // Since Linux 2.6.7 and further zero value is the first available channel.
  442. Channel uint8
  443. raw RawSockaddrRFCOMM
  444. }
  445. func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  446. sa.raw.Family = AF_BLUETOOTH
  447. sa.raw.Channel = sa.Channel
  448. sa.raw.Bdaddr = sa.Addr
  449. return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
  450. }
  451. // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
  452. // The RxID and TxID fields are used for transport protocol addressing in
  453. // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
  454. // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
  455. //
  456. // The SockaddrCAN struct must be bound to the socket file descriptor
  457. // using Bind before the CAN socket can be used.
  458. //
  459. // // Read one raw CAN frame
  460. // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
  461. // addr := &SockaddrCAN{Ifindex: index}
  462. // Bind(fd, addr)
  463. // frame := make([]byte, 16)
  464. // Read(fd, frame)
  465. //
  466. // The full SocketCAN documentation can be found in the linux kernel
  467. // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
  468. type SockaddrCAN struct {
  469. Ifindex int
  470. RxID uint32
  471. TxID uint32
  472. raw RawSockaddrCAN
  473. }
  474. func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
  475. if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
  476. return nil, 0, EINVAL
  477. }
  478. sa.raw.Family = AF_CAN
  479. sa.raw.Ifindex = int32(sa.Ifindex)
  480. rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
  481. for i := 0; i < 4; i++ {
  482. sa.raw.Addr[i] = rx[i]
  483. }
  484. tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
  485. for i := 0; i < 4; i++ {
  486. sa.raw.Addr[i+4] = tx[i]
  487. }
  488. return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
  489. }
  490. // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
  491. // SockaddrALG enables userspace access to the Linux kernel's cryptography
  492. // subsystem. The Type and Name fields specify which type of hash or cipher
  493. // should be used with a given socket.
  494. //
  495. // To create a file descriptor that provides access to a hash or cipher, both
  496. // Bind and Accept must be used. Once the setup process is complete, input
  497. // data can be written to the socket, processed by the kernel, and then read
  498. // back as hash output or ciphertext.
  499. //
  500. // Here is an example of using an AF_ALG socket with SHA1 hashing.
  501. // The initial socket setup process is as follows:
  502. //
  503. // // Open a socket to perform SHA1 hashing.
  504. // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
  505. // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
  506. // unix.Bind(fd, addr)
  507. // // Note: unix.Accept does not work at this time; must invoke accept()
  508. // // manually using unix.Syscall.
  509. // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
  510. //
  511. // Once a file descriptor has been returned from Accept, it may be used to
  512. // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
  513. // may be re-used repeatedly with subsequent Write and Read operations.
  514. //
  515. // When hashing a small byte slice or string, a single Write and Read may
  516. // be used:
  517. //
  518. // // Assume hashfd is already configured using the setup process.
  519. // hash := os.NewFile(hashfd, "sha1")
  520. // // Hash an input string and read the results. Each Write discards
  521. // // previous hash state. Read always reads the current state.
  522. // b := make([]byte, 20)
  523. // for i := 0; i < 2; i++ {
  524. // io.WriteString(hash, "Hello, world.")
  525. // hash.Read(b)
  526. // fmt.Println(hex.EncodeToString(b))
  527. // }
  528. // // Output:
  529. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  530. // // 2ae01472317d1935a84797ec1983ae243fc6aa28
  531. //
  532. // For hashing larger byte slices, or byte streams such as those read from
  533. // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
  534. // the hash digest instead of creating a new one for a given chunk and finalizing it.
  535. //
  536. // // Assume hashfd and addr are already configured using the setup process.
  537. // hash := os.NewFile(hashfd, "sha1")
  538. // // Hash the contents of a file.
  539. // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
  540. // b := make([]byte, 4096)
  541. // for {
  542. // n, err := f.Read(b)
  543. // if err == io.EOF {
  544. // break
  545. // }
  546. // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
  547. // }
  548. // hash.Read(b)
  549. // fmt.Println(hex.EncodeToString(b))
  550. // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
  551. //
  552. // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
  553. type SockaddrALG struct {
  554. Type string
  555. Name string
  556. Feature uint32
  557. Mask uint32
  558. raw RawSockaddrALG
  559. }
  560. func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
  561. // Leave room for NUL byte terminator.
  562. if len(sa.Type) > 13 {
  563. return nil, 0, EINVAL
  564. }
  565. if len(sa.Name) > 63 {
  566. return nil, 0, EINVAL
  567. }
  568. sa.raw.Family = AF_ALG
  569. sa.raw.Feat = sa.Feature
  570. sa.raw.Mask = sa.Mask
  571. typ, err := ByteSliceFromString(sa.Type)
  572. if err != nil {
  573. return nil, 0, err
  574. }
  575. name, err := ByteSliceFromString(sa.Name)
  576. if err != nil {
  577. return nil, 0, err
  578. }
  579. copy(sa.raw.Type[:], typ)
  580. copy(sa.raw.Name[:], name)
  581. return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
  582. }
  583. // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
  584. // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
  585. // bidirectional communication between a hypervisor and its guest virtual
  586. // machines.
  587. type SockaddrVM struct {
  588. // CID and Port specify a context ID and port address for a VM socket.
  589. // Guests have a unique CID, and hosts may have a well-known CID of:
  590. // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
  591. // - VMADDR_CID_HOST: refers to other processes on the host.
  592. CID uint32
  593. Port uint32
  594. raw RawSockaddrVM
  595. }
  596. func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
  597. sa.raw.Family = AF_VSOCK
  598. sa.raw.Port = sa.Port
  599. sa.raw.Cid = sa.CID
  600. return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
  601. }
  602. func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
  603. switch rsa.Addr.Family {
  604. case AF_NETLINK:
  605. pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
  606. sa := new(SockaddrNetlink)
  607. sa.Family = pp.Family
  608. sa.Pad = pp.Pad
  609. sa.Pid = pp.Pid
  610. sa.Groups = pp.Groups
  611. return sa, nil
  612. case AF_PACKET:
  613. pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
  614. sa := new(SockaddrLinklayer)
  615. sa.Protocol = pp.Protocol
  616. sa.Ifindex = int(pp.Ifindex)
  617. sa.Hatype = pp.Hatype
  618. sa.Pkttype = pp.Pkttype
  619. sa.Halen = pp.Halen
  620. for i := 0; i < len(sa.Addr); i++ {
  621. sa.Addr[i] = pp.Addr[i]
  622. }
  623. return sa, nil
  624. case AF_UNIX:
  625. pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
  626. sa := new(SockaddrUnix)
  627. if pp.Path[0] == 0 {
  628. // "Abstract" Unix domain socket.
  629. // Rewrite leading NUL as @ for textual display.
  630. // (This is the standard convention.)
  631. // Not friendly to overwrite in place,
  632. // but the callers below don't care.
  633. pp.Path[0] = '@'
  634. }
  635. // Assume path ends at NUL.
  636. // This is not technically the Linux semantics for
  637. // abstract Unix domain sockets--they are supposed
  638. // to be uninterpreted fixed-size binary blobs--but
  639. // everyone uses this convention.
  640. n := 0
  641. for n < len(pp.Path) && pp.Path[n] != 0 {
  642. n++
  643. }
  644. bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
  645. sa.Name = string(bytes)
  646. return sa, nil
  647. case AF_INET:
  648. pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
  649. sa := new(SockaddrInet4)
  650. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  651. sa.Port = int(p[0])<<8 + int(p[1])
  652. for i := 0; i < len(sa.Addr); i++ {
  653. sa.Addr[i] = pp.Addr[i]
  654. }
  655. return sa, nil
  656. case AF_INET6:
  657. pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
  658. sa := new(SockaddrInet6)
  659. p := (*[2]byte)(unsafe.Pointer(&pp.Port))
  660. sa.Port = int(p[0])<<8 + int(p[1])
  661. sa.ZoneId = pp.Scope_id
  662. for i := 0; i < len(sa.Addr); i++ {
  663. sa.Addr[i] = pp.Addr[i]
  664. }
  665. return sa, nil
  666. case AF_VSOCK:
  667. pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
  668. sa := &SockaddrVM{
  669. CID: pp.Cid,
  670. Port: pp.Port,
  671. }
  672. return sa, nil
  673. case AF_BLUETOOTH:
  674. proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
  675. if err != nil {
  676. return nil, err
  677. }
  678. // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
  679. switch proto {
  680. case BTPROTO_L2CAP:
  681. pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
  682. sa := &SockaddrL2{
  683. PSM: pp.Psm,
  684. CID: pp.Cid,
  685. Addr: pp.Bdaddr,
  686. AddrType: pp.Bdaddr_type,
  687. }
  688. return sa, nil
  689. case BTPROTO_RFCOMM:
  690. pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
  691. sa := &SockaddrRFCOMM{
  692. Channel: pp.Channel,
  693. Addr: pp.Bdaddr,
  694. }
  695. return sa, nil
  696. }
  697. }
  698. return nil, EAFNOSUPPORT
  699. }
  700. func Accept(fd int) (nfd int, sa Sockaddr, err error) {
  701. var rsa RawSockaddrAny
  702. var len _Socklen = SizeofSockaddrAny
  703. nfd, err = accept(fd, &rsa, &len)
  704. if err != nil {
  705. return
  706. }
  707. sa, err = anyToSockaddr(fd, &rsa)
  708. if err != nil {
  709. Close(nfd)
  710. nfd = 0
  711. }
  712. return
  713. }
  714. func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
  715. var rsa RawSockaddrAny
  716. var len _Socklen = SizeofSockaddrAny
  717. nfd, err = accept4(fd, &rsa, &len, flags)
  718. if err != nil {
  719. return
  720. }
  721. if len > SizeofSockaddrAny {
  722. panic("RawSockaddrAny too small")
  723. }
  724. sa, err = anyToSockaddr(fd, &rsa)
  725. if err != nil {
  726. Close(nfd)
  727. nfd = 0
  728. }
  729. return
  730. }
  731. func Getsockname(fd int) (sa Sockaddr, err error) {
  732. var rsa RawSockaddrAny
  733. var len _Socklen = SizeofSockaddrAny
  734. if err = getsockname(fd, &rsa, &len); err != nil {
  735. return
  736. }
  737. return anyToSockaddr(fd, &rsa)
  738. }
  739. func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
  740. var value IPMreqn
  741. vallen := _Socklen(SizeofIPMreqn)
  742. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  743. return &value, err
  744. }
  745. func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
  746. var value Ucred
  747. vallen := _Socklen(SizeofUcred)
  748. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  749. return &value, err
  750. }
  751. func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
  752. var value TCPInfo
  753. vallen := _Socklen(SizeofTCPInfo)
  754. err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  755. return &value, err
  756. }
  757. // GetsockoptString returns the string value of the socket option opt for the
  758. // socket associated with fd at the given socket level.
  759. func GetsockoptString(fd, level, opt int) (string, error) {
  760. buf := make([]byte, 256)
  761. vallen := _Socklen(len(buf))
  762. err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  763. if err != nil {
  764. if err == ERANGE {
  765. buf = make([]byte, vallen)
  766. err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  767. }
  768. if err != nil {
  769. return "", err
  770. }
  771. }
  772. return string(buf[:vallen-1]), nil
  773. }
  774. func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  775. return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  776. }
  777. // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  778. // KeyctlInt calls keyctl commands in which each argument is an int.
  779. // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  780. // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  781. // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  782. // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  783. //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  784. // KeyctlBuffer calls keyctl commands in which the third and fourth
  785. // arguments are a buffer and its length, respectively.
  786. // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  787. //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  788. // KeyctlString calls keyctl commands which return a string.
  789. // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  790. func KeyctlString(cmd int, id int) (string, error) {
  791. // We must loop as the string data may change in between the syscalls.
  792. // We could allocate a large buffer here to reduce the chance that the
  793. // syscall needs to be called twice; however, this is unnecessary as
  794. // the performance loss is negligible.
  795. var buffer []byte
  796. for {
  797. // Try to fill the buffer with data
  798. length, err := KeyctlBuffer(cmd, id, buffer, 0)
  799. if err != nil {
  800. return "", err
  801. }
  802. // Check if the data was written
  803. if length <= len(buffer) {
  804. // Exclude the null terminator
  805. return string(buffer[:length-1]), nil
  806. }
  807. // Make a bigger buffer if needed
  808. buffer = make([]byte, length)
  809. }
  810. }
  811. // Keyctl commands with special signatures.
  812. // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  813. // See the full documentation at:
  814. // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  815. func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  816. createInt := 0
  817. if create {
  818. createInt = 1
  819. }
  820. return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  821. }
  822. // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  823. // key handle permission mask as described in the "keyctl setperm" section of
  824. // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  825. // See the full documentation at:
  826. // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  827. func KeyctlSetperm(id int, perm uint32) error {
  828. _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  829. return err
  830. }
  831. //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  832. // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  833. // See the full documentation at:
  834. // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  835. func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  836. return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  837. }
  838. //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  839. // KeyctlSearch implements the KEYCTL_SEARCH command.
  840. // See the full documentation at:
  841. // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  842. func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  843. return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  844. }
  845. //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  846. // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  847. // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  848. // of Iovec (each of which represents a buffer) instead of a single buffer.
  849. // See the full documentation at:
  850. // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  851. func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  852. return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  853. }
  854. //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  855. // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  856. // computes a Diffie-Hellman shared secret based on the provide params. The
  857. // secret is written to the provided buffer and the returned size is the number
  858. // of bytes written (returning an error if there is insufficient space in the
  859. // buffer). If a nil buffer is passed in, this function returns the minimum
  860. // buffer length needed to store the appropriate data. Note that this differs
  861. // from KEYCTL_READ's behavior which always returns the requested payload size.
  862. // See the full documentation at:
  863. // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  864. func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  865. return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  866. }
  867. func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  868. var msg Msghdr
  869. var rsa RawSockaddrAny
  870. msg.Name = (*byte)(unsafe.Pointer(&rsa))
  871. msg.Namelen = uint32(SizeofSockaddrAny)
  872. var iov Iovec
  873. if len(p) > 0 {
  874. iov.Base = &p[0]
  875. iov.SetLen(len(p))
  876. }
  877. var dummy byte
  878. if len(oob) > 0 {
  879. if len(p) == 0 {
  880. var sockType int
  881. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  882. if err != nil {
  883. return
  884. }
  885. // receive at least one normal byte
  886. if sockType != SOCK_DGRAM {
  887. iov.Base = &dummy
  888. iov.SetLen(1)
  889. }
  890. }
  891. msg.Control = &oob[0]
  892. msg.SetControllen(len(oob))
  893. }
  894. msg.Iov = &iov
  895. msg.Iovlen = 1
  896. if n, err = recvmsg(fd, &msg, flags); err != nil {
  897. return
  898. }
  899. oobn = int(msg.Controllen)
  900. recvflags = int(msg.Flags)
  901. // source address is only specified if the socket is unconnected
  902. if rsa.Addr.Family != AF_UNSPEC {
  903. from, err = anyToSockaddr(fd, &rsa)
  904. }
  905. return
  906. }
  907. func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  908. _, err = SendmsgN(fd, p, oob, to, flags)
  909. return
  910. }
  911. func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  912. var ptr unsafe.Pointer
  913. var salen _Socklen
  914. if to != nil {
  915. var err error
  916. ptr, salen, err = to.sockaddr()
  917. if err != nil {
  918. return 0, err
  919. }
  920. }
  921. var msg Msghdr
  922. msg.Name = (*byte)(ptr)
  923. msg.Namelen = uint32(salen)
  924. var iov Iovec
  925. if len(p) > 0 {
  926. iov.Base = &p[0]
  927. iov.SetLen(len(p))
  928. }
  929. var dummy byte
  930. if len(oob) > 0 {
  931. if len(p) == 0 {
  932. var sockType int
  933. sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  934. if err != nil {
  935. return 0, err
  936. }
  937. // send at least one normal byte
  938. if sockType != SOCK_DGRAM {
  939. iov.Base = &dummy
  940. iov.SetLen(1)
  941. }
  942. }
  943. msg.Control = &oob[0]
  944. msg.SetControllen(len(oob))
  945. }
  946. msg.Iov = &iov
  947. msg.Iovlen = 1
  948. if n, err = sendmsg(fd, &msg, flags); err != nil {
  949. return 0, err
  950. }
  951. if len(oob) > 0 && len(p) == 0 {
  952. n = 0
  953. }
  954. return n, nil
  955. }
  956. // BindToDevice binds the socket associated with fd to device.
  957. func BindToDevice(fd int, device string) (err error) {
  958. return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  959. }
  960. //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  961. func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  962. // The peek requests are machine-size oriented, so we wrap it
  963. // to retrieve arbitrary-length data.
  964. // The ptrace syscall differs from glibc's ptrace.
  965. // Peeks returns the word in *data, not as the return value.
  966. var buf [sizeofPtr]byte
  967. // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  968. // access (PEEKUSER warns that it might), but if we don't
  969. // align our reads, we might straddle an unmapped page
  970. // boundary and not get the bytes leading up to the page
  971. // boundary.
  972. n := 0
  973. if addr%sizeofPtr != 0 {
  974. err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  975. if err != nil {
  976. return 0, err
  977. }
  978. n += copy(out, buf[addr%sizeofPtr:])
  979. out = out[n:]
  980. }
  981. // Remainder.
  982. for len(out) > 0 {
  983. // We use an internal buffer to guarantee alignment.
  984. // It's not documented if this is necessary, but we're paranoid.
  985. err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  986. if err != nil {
  987. return n, err
  988. }
  989. copied := copy(out, buf[0:])
  990. n += copied
  991. out = out[copied:]
  992. }
  993. return n, nil
  994. }
  995. func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  996. return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  997. }
  998. func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  999. return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1000. }
  1001. func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1002. return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1003. }
  1004. func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1005. // As for ptracePeek, we need to align our accesses to deal
  1006. // with the possibility of straddling an invalid page.
  1007. // Leading edge.
  1008. n := 0
  1009. if addr%sizeofPtr != 0 {
  1010. var buf [sizeofPtr]byte
  1011. err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1012. if err != nil {
  1013. return 0, err
  1014. }
  1015. n += copy(buf[addr%sizeofPtr:], data)
  1016. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1017. err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word)
  1018. if err != nil {
  1019. return 0, err
  1020. }
  1021. data = data[n:]
  1022. }
  1023. // Interior.
  1024. for len(data) > sizeofPtr {
  1025. word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1026. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1027. if err != nil {
  1028. return n, err
  1029. }
  1030. n += sizeofPtr
  1031. data = data[sizeofPtr:]
  1032. }
  1033. // Trailing edge.
  1034. if len(data) > 0 {
  1035. var buf [sizeofPtr]byte
  1036. err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1037. if err != nil {
  1038. return n, err
  1039. }
  1040. copy(buf[0:], data)
  1041. word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1042. err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1043. if err != nil {
  1044. return n, err
  1045. }
  1046. n += len(data)
  1047. }
  1048. return n, nil
  1049. }
  1050. func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1051. return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1052. }
  1053. func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1054. return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1055. }
  1056. func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1057. return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1058. }
  1059. func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1060. return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1061. }
  1062. func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1063. return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1064. }
  1065. func PtraceSetOptions(pid int, options int) (err error) {
  1066. return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1067. }
  1068. func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1069. var data _C_long
  1070. err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1071. msg = uint(data)
  1072. return
  1073. }
  1074. func PtraceCont(pid int, signal int) (err error) {
  1075. return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1076. }
  1077. func PtraceSyscall(pid int, signal int) (err error) {
  1078. return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1079. }
  1080. func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1081. func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1082. func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1083. //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1084. func Reboot(cmd int) (err error) {
  1085. return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1086. }
  1087. func ReadDirent(fd int, buf []byte) (n int, err error) {
  1088. return Getdents(fd, buf)
  1089. }
  1090. //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1091. func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1092. // Certain file systems get rather angry and EINVAL if you give
  1093. // them an empty string of data, rather than NULL.
  1094. if data == "" {
  1095. return mount(source, target, fstype, flags, nil)
  1096. }
  1097. datap, err := BytePtrFromString(data)
  1098. if err != nil {
  1099. return err
  1100. }
  1101. return mount(source, target, fstype, flags, datap)
  1102. }
  1103. // Sendto
  1104. // Recvfrom
  1105. // Socketpair
  1106. /*
  1107. * Direct access
  1108. */
  1109. //sys Acct(path string) (err error)
  1110. //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1111. //sys Adjtimex(buf *Timex) (state int, err error)
  1112. //sys Chdir(path string) (err error)
  1113. //sys Chroot(path string) (err error)
  1114. //sys ClockGettime(clockid int32, time *Timespec) (err error)
  1115. //sys Close(fd int) (err error)
  1116. //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1117. //sys Dup(oldfd int) (fd int, err error)
  1118. //sys Dup3(oldfd int, newfd int, flags int) (err error)
  1119. //sysnb EpollCreate1(flag int) (fd int, err error)
  1120. //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1121. //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1122. //sys Exit(code int) = SYS_EXIT_GROUP
  1123. //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1124. //sys Fchdir(fd int) (err error)
  1125. //sys Fchmod(fd int, mode uint32) (err error)
  1126. //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1127. //sys fcntl(fd int, cmd int, arg int) (val int, err error)
  1128. //sys Fdatasync(fd int) (err error)
  1129. //sys Flock(fd int, how int) (err error)
  1130. //sys Fsync(fd int) (err error)
  1131. //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1132. //sysnb Getpgid(pid int) (pgid int, err error)
  1133. func Getpgrp() (pid int) {
  1134. pid, _ = Getpgid(0)
  1135. return
  1136. }
  1137. //sysnb Getpid() (pid int)
  1138. //sysnb Getppid() (ppid int)
  1139. //sys Getpriority(which int, who int) (prio int, err error)
  1140. //sys Getrandom(buf []byte, flags int) (n int, err error)
  1141. //sysnb Getrusage(who int, rusage *Rusage) (err error)
  1142. //sysnb Getsid(pid int) (sid int, err error)
  1143. //sysnb Gettid() (tid int)
  1144. //sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1145. //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1146. //sysnb InotifyInit1(flags int) (fd int, err error)
  1147. //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1148. //sysnb Kill(pid int, sig syscall.Signal) (err error)
  1149. //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1150. //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1151. //sys Listxattr(path string, dest []byte) (sz int, err error)
  1152. //sys Llistxattr(path string, dest []byte) (sz int, err error)
  1153. //sys Lremovexattr(path string, attr string) (err error)
  1154. //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1155. //sys Mkdirat(dirfd int, path string, mode uint32) (err error)
  1156. //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1157. //sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1158. //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1159. //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1160. //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1161. //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1162. //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1163. //sys read(fd int, p []byte) (n int, err error)
  1164. //sys Removexattr(path string, attr string) (err error)
  1165. //sys Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
  1166. //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1167. //sys Setdomainname(p []byte) (err error)
  1168. //sys Sethostname(p []byte) (err error)
  1169. //sysnb Setpgid(pid int, pgid int) (err error)
  1170. //sysnb Setsid() (pid int, err error)
  1171. //sysnb Settimeofday(tv *Timeval) (err error)
  1172. //sys Setns(fd int, nstype int) (err error)
  1173. // issue 1435.
  1174. // On linux Setuid and Setgid only affects the current thread, not the process.
  1175. // This does not match what most callers expect so we must return an error
  1176. // here rather than letting the caller think that the call succeeded.
  1177. func Setuid(uid int) (err error) {
  1178. return EOPNOTSUPP
  1179. }
  1180. func Setgid(uid int) (err error) {
  1181. return EOPNOTSUPP
  1182. }
  1183. //sys Setpriority(which int, who int, prio int) (err error)
  1184. //sys Setxattr(path string, attr string, data []byte, flags int) (err error)
  1185. //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1186. //sys Sync()
  1187. //sys Syncfs(fd int) (err error)
  1188. //sysnb Sysinfo(info *Sysinfo_t) (err error)
  1189. //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1190. //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1191. //sysnb Times(tms *Tms) (ticks uintptr, err error)
  1192. //sysnb Umask(mask int) (oldmask int)
  1193. //sysnb Uname(buf *Utsname) (err error)
  1194. //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1195. //sys Unshare(flags int) (err error)
  1196. //sys write(fd int, p []byte) (n int, err error)
  1197. //sys exitThread(code int) (err error) = SYS_EXIT
  1198. //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1199. //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1200. // mmap varies by architecture; see syscall_linux_*.go.
  1201. //sys munmap(addr uintptr, length uintptr) (err error)
  1202. var mapper = &mmapper{
  1203. active: make(map[*byte][]byte),
  1204. mmap: mmap,
  1205. munmap: munmap,
  1206. }
  1207. func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1208. return mapper.Mmap(fd, offset, length, prot, flags)
  1209. }
  1210. func Munmap(b []byte) (err error) {
  1211. return mapper.Munmap(b)
  1212. }
  1213. //sys Madvise(b []byte, advice int) (err error)
  1214. //sys Mprotect(b []byte, prot int) (err error)
  1215. //sys Mlock(b []byte) (err error)
  1216. //sys Mlockall(flags int) (err error)
  1217. //sys Msync(b []byte, flags int) (err error)
  1218. //sys Munlock(b []byte) (err error)
  1219. //sys Munlockall() (err error)
  1220. // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1221. // using the specified flags.
  1222. func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1223. n, _, errno := Syscall6(
  1224. SYS_VMSPLICE,
  1225. uintptr(fd),
  1226. uintptr(unsafe.Pointer(&iovs[0])),
  1227. uintptr(len(iovs)),
  1228. uintptr(flags),
  1229. 0,
  1230. 0,
  1231. )
  1232. if errno != 0 {
  1233. return 0, syscall.Errno(errno)
  1234. }
  1235. return int(n), nil
  1236. }
  1237. //sys faccessat(dirfd int, path string, mode uint32) (err error)
  1238. func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1239. if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1240. return EINVAL
  1241. } else if flags&(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1242. return EOPNOTSUPP
  1243. }
  1244. return faccessat(dirfd, path, mode)
  1245. }
  1246. /*
  1247. * Unimplemented
  1248. */
  1249. // AfsSyscall
  1250. // Alarm
  1251. // ArchPrctl
  1252. // Brk
  1253. // Capget
  1254. // Capset
  1255. // ClockGetres
  1256. // ClockNanosleep
  1257. // ClockSettime
  1258. // Clone
  1259. // CreateModule
  1260. // DeleteModule
  1261. // EpollCtlOld
  1262. // EpollPwait
  1263. // EpollWaitOld
  1264. // Execve
  1265. // Fgetxattr
  1266. // Flistxattr
  1267. // Fork
  1268. // Fremovexattr
  1269. // Fsetxattr
  1270. // Futex
  1271. // GetKernelSyms
  1272. // GetMempolicy
  1273. // GetRobustList
  1274. // GetThreadArea
  1275. // Getitimer
  1276. // Getpmsg
  1277. // IoCancel
  1278. // IoDestroy
  1279. // IoGetevents
  1280. // IoSetup
  1281. // IoSubmit
  1282. // IoprioGet
  1283. // IoprioSet
  1284. // KexecLoad
  1285. // LookupDcookie
  1286. // Mbind
  1287. // MigratePages
  1288. // Mincore
  1289. // ModifyLdt
  1290. // Mount
  1291. // MovePages
  1292. // MqGetsetattr
  1293. // MqNotify
  1294. // MqOpen
  1295. // MqTimedreceive
  1296. // MqTimedsend
  1297. // MqUnlink
  1298. // Mremap
  1299. // Msgctl
  1300. // Msgget
  1301. // Msgrcv
  1302. // Msgsnd
  1303. // Nfsservctl
  1304. // Personality
  1305. // Pselect6
  1306. // Ptrace
  1307. // Putpmsg
  1308. // QueryModule
  1309. // Quotactl
  1310. // Readahead
  1311. // Readv
  1312. // RemapFilePages
  1313. // RestartSyscall
  1314. // RtSigaction
  1315. // RtSigpending
  1316. // RtSigprocmask
  1317. // RtSigqueueinfo
  1318. // RtSigreturn
  1319. // RtSigsuspend
  1320. // RtSigtimedwait
  1321. // SchedGetPriorityMax
  1322. // SchedGetPriorityMin
  1323. // SchedGetparam
  1324. // SchedGetscheduler
  1325. // SchedRrGetInterval
  1326. // SchedSetparam
  1327. // SchedYield
  1328. // Security
  1329. // Semctl
  1330. // Semget
  1331. // Semop
  1332. // Semtimedop
  1333. // SetMempolicy
  1334. // SetRobustList
  1335. // SetThreadArea
  1336. // SetTidAddress
  1337. // Shmat
  1338. // Shmctl
  1339. // Shmdt
  1340. // Shmget
  1341. // Sigaltstack
  1342. // Signalfd
  1343. // Swapoff
  1344. // Swapon
  1345. // Sysfs
  1346. // TimerCreate
  1347. // TimerDelete
  1348. // TimerGetoverrun
  1349. // TimerGettime
  1350. // TimerSettime
  1351. // Timerfd
  1352. // Tkill (obsolete)
  1353. // Tuxcall
  1354. // Umount2
  1355. // Uselib
  1356. // Utimensat
  1357. // Vfork
  1358. // Vhangup
  1359. // Vserver
  1360. // Waitid
  1361. // _Sysctl